Open Access

Effects of water turbulence on plant, sediment and water quality in reed (Phragmites australis) community


Cite

Asaeda, T., Siong, K., Kawashima, T. & Sakamoto K. (2009). Growth of Phragmites japonica on a sandbar of regulated river: morphological adaptation of the plant to low water and nutrient availability in the substrate. River Res. Appl., 25, 874−891. DOI: 10.1002/rra.1191.10.1002/rra.1191Search in Google Scholar

Asaeda, T., Gomes, P.I.A. & Takeda E. (2010a). Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Res. Appl., 26, 960−976. DOI: 10.1002/ rra.1313.Search in Google Scholar

Asaeda, T., Rajapakse, L. & Kanoh M. (2010b). Fine sediment retention as affected by annual shoot collapse: Sparganium erectum as an ecosystem engineer in a lowland stream. River Res. Appl., 26, 1153−1169. DOI: 10.1002/ rra.1322.10.1002/rra.1322Search in Google Scholar

Asaeda, T. & Shinohara R. (2012). Japanese lakes. In L. Bengtsson, R. Herschy & R. Fairbridge (Eds.), Encyclopedia of lakes and reservoirs (pp. 415−419). Netherlands: Springer.Search in Google Scholar

Atapaththu, K.S.S. & Asaeda T. (2015). Growth and stress responses of Nuttall’s waterweed Elodea nuttallii (Planch) St. John to water movements. Hydrobiologia, 747, 217−233. doi : 10.1007/s10750-014-2141-9.Search in Google Scholar

Bal, K.D., Bouma, T.J., Buis, K., Struyf, E., Jonas, S., Backx, H. & Meire P. (2011). Trade-off between drag reduction and light interception of macrophytes: comparing five aquatic plants with contrasting morphology. Funct. Ecol., 25, 1197−1205. DOI: 10.1111/j.1365-2435.2011.01909.x.10.1111/j.1365-2435.2011.01909.xSearch in Google Scholar

Bernhardt-Romermann, M., Gray, A., Vanbergen, A.J., Berges, L., Bohner, A., Brooker, R.W., De Bruyn, L., De Cinti, B., Dirnbock, T., Grandin, U., Hester, A.J., Kanka, R., Klotz, S., Loucougaray, G., Lundin, L., Matteucci, G., Meszaros, I., Olah, V., Preda, E., Prevosto, B., Pykala, J., Schmidt, W., Taylor, M.E., Vadineanu, A., Waldmann, T. & Stadler J. (2011). Functional traits and local environment predict vegetation responses to disturbance: a pan- European multi-site experiment. J. Ecol., 99, 777−787. DOI: 10.1111/j.1365-2745.2011.01794.x.10.1111/j.1365-2745.2011.01794.xSearch in Google Scholar

Bornette, G. & Puijalon S. (2011). Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 73, 1−14. doi : 10.1007/s00027-010-0162-7.Search in Google Scholar

Chambers, P.A., Prepas, E.E., Hamilton, H.R. & Bothwell M.L. (1991). Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol. Appl., 1, 249−257. DOI: 10.2307/1941754.10.2307/194175427755769Search in Google Scholar

Coops, H. & Van der Velde G. (1996). Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat. Bot., 53, 175−185. doi : 10.1016/0304-3770(96)01026-1.Search in Google Scholar

Ellawala, C., Asaeda, T. & Kawamura K. (2012). The effect of flow turbulence on growth, nutrient uptake and stable carbon and nitrogen isotope signatures in Chara fibrosa. Ann. Limnol., 48, 349−354. DOI: 10.1051/limn/2012024.10.1051/limn/2012024Search in Google Scholar

Ellawala, C., Asaeda, T. & Kawamura K. (2013). Water movement induced variations in growth regulation and metabolism of freshwater macrophyte Vallisneria spiralis L. in early growth stages. Hydrobiologia, 709, 173−182. doi : 10.1007/s10750-013-1447-3.Search in Google Scholar

Engloner, A.I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. Flora - Morphology, Distribution, Functional Ecology of Plants, 204, 331−346. doi : 10.1016/j.flora.2008.05.001.Search in Google Scholar

Fonseca, M.S. & Fisher J.S. (1986). Comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar. Ecol.- Progress Series, 29, 15−22.10.3354/meps029015Search in Google Scholar

Green, J.C. (2005). Velocity and turbulence distribution around lotic macrophytes. Aquat. Ecol., 39, 1−10. doi : 10.1007/s10452-004-1913-0.Search in Google Scholar

Hans, B. (1994). Functions of macrophytes in constructed wetlands. Water Sci. Technol., 29, 71−78.Search in Google Scholar

Horinouchi, M., Kume, G., Yamaguchi, A., Toda, K. & Kurata K. (2008). Food habits of small fishes in a common reed Phragmites australis belt in Lake Shinji, Shimane, Japan. Ichthyol. Res., 55, 207−217. doi : 10.1007/s10228-007-0021-2.Search in Google Scholar

Horne, A.J. & Goldman C.R. (1994). Limnology. New York: McGraw-Hill.Search in Google Scholar

Horppila, J., Kaitaranta, J., Joensuu, L. & Nurminen L. (2013). Influence of emergent macrophyte (Phragmites australis) density on water turbulence and erosion of organic-rich sediment. Journal of Hydrodynamics, Ser. B, 25, 288−293. doi : 10.1016/S1001-6058(13)60365-0.Search in Google Scholar

Komuro, T., Sakayamai, H., Kamiya, H. &Yamamuro M. (2016). Reconstruction of the charophyte community of Lake Shinji by oospore collection. Knowledge and Management of Aquatic Ecosystems, 417, 12. DOI: 10.1051/ kmae/2015045.Search in Google Scholar

Krolová, M., Čižkova, H., Hejzlar, J. & Polakova S. (2013). Response of littoral macrophytes to water level fluctuations in a storage reservoir. Knowledge and Management of Aquatic Ecosystem, 408, 07. DOI: 10.1051/kmae/2013042.10.1051/kmae/2013042Search in Google Scholar

Leonard, L.A. & Reed D.J. (2002). Hydrodynamics and sediment transport through tidal marsh canopies. J. Coast.Search in Google Scholar

Res. SI, 36, 459−469.Search in Google Scholar

Leonard, L.A. & Croft A.L. (2006). The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar. Coast. Shelf Sci., 69, 325−336. doi : 10.1016/j.ecss.2006.05.004.Search in Google Scholar

Madsen, J.D., Chambers, P.A., James, W.F., Koch, E.W. & Westlake D.F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444, 71−84. doi : 10.1023/A:1017520800568.Search in Google Scholar

Melinda, K. & Janos J. (2014). Measurements-based hydrodynamic characterisation of reed-open water interface zone in shallow lake environment. Periodica Polytechnica Civil Engineering, 58, 229−241. DOI: 10.3311/ PPci.7569.Search in Google Scholar

Olson, E.R., Ventura, S.J. & Zedler J.B. (2012). Merging geospatial and field data to predict the distribution and abundance of an exotic macrophyte in a large Wisconsin reservoir. Aquat. Bot., 96, 31−41. doi : 10.1016/j. aquabot.2011.09.007.Search in Google Scholar

Sand-Jensen, K. & Pedersen O. (1999). Velocity gradients and turbulence around macrophyte stands in streams.10.1046/j.1365-2427.1999.444495.xSearch in Google Scholar

Freshw. Biol., 42, 315−328. DOI: 10.1046/j.1365-2427.1999.444495.x.10.1046/j.1365-2427.1999.444495.xSearch in Google Scholar

Schutten, J., Dainty, J. & Davy A.J. (2004). Wave‐induced hydraulic forces on submerged aquatic plants in Shallow Lakes. Ann. Bot., 93, 333−341. doi : 10.1093/aob/mch043.Search in Google Scholar

Silinski, A., Heuner, M., Schoelynck, J., Puijalon, S., Schroder, U., Fuchs, E., Troch, P., Bouma, T.J., Meire, P. & Temmerman S. (2015). Effects of wind waves versus ship waves on tidal marsh plants: A flume study on different life stages of Scirpus maritimus. PLoS ONE, 10, e0118687. DOI: 10.1371/journal.pone.0118687.10.1371/journal.pone.0118687437056125799017Search in Google Scholar

Struyf, E., Van Damme, S., Gribsholt, B., Bal, K., Beauchard, O., Middelburg, J.J. & Meire P. (2007). Phragmites australis and silica cycling in tidal wetlands. Aquat. Bot., 87, 134−140. doi : 10.1016/j.aquabot.2007.05.002.Search in Google Scholar

Thomaz, S., Bini, L. & Bozelli R. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems.10.1007/s10750-006-0285-ySearch in Google Scholar

Hydrobiologia, 579, 1−13. doi : 10.1007/s10750-006-0285-y. Search in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography