Open Access

Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen


Cite

Allison, V.J. & Miller R.M. (2004). Using fatty acids to quantify arbuscular mycorrhizal fungi. In G. Podila & A. Varma (Eds.), Mycorrhizae: basic research and applications (pp. 141−161). New Delhi: I.K. International Pvt. Ltd.Search in Google Scholar

Bååth, E. (2003). The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol., 45, 373-383. DOI: 10.1007/s00248-003-2002-y.10.1007/s00248-003-2002-y12704558Search in Google Scholar

Bardgett, R.D., Hobbs, P.J. & Frostegård A. (1996). Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils, 22, 261-264. DOI: 10.1007/bf00382522.10.1007/BF00382522Search in Google Scholar

Barrios, E. (2007). Soil biota, ecosystem services and land productivity. Ecological Economics, 64, 269-285. DOI: 10.1016/j.ecolecon.2007.03.004.10.1016/j.ecolecon.2007.03.004Search in Google Scholar

Binet, S., Gogo, S. & Laggoun-Défarge F. (2013). A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. J. Hydrol., 499, 132-139. DOI: 10.1016/j.jhydrol.2013.06.035.10.1016/j.jhydrol.2013.06.035Search in Google Scholar

Bligh, E.G. & Dyer W.J. (1959). A rapid method of total lipide extraction and purification. Can. J. Biochem. Physiol., 37, 911−917. DOI: 10.1139/o59-099.10.1139/o59-09913671378Search in Google Scholar

Bull, I.D., Nisha, R.P., Grahame, H.H., Ineson, P. & Evershed R.P. (2000). Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature, 405, 175-178. DOI: 10.1038/35012061.10.1038/3501206110821271Search in Google Scholar

Canuel, E.A., Cloern, J.E., Ringelberg, D.B., Guckert, J.B. & Rau G.H. (1995). Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr., 40(1), 67−81. DOI: 10.4319/lo.1995.40.1.0067.10.4319/lo.1995.40.1.0067Search in Google Scholar

Chilová, V. (2000). Selected peatland ecosystems of the Protected Landscape Area Veľká Fatra and the contiguous territory of Turiec basin (in Slovak). In V. Stanová (Ed.), Rašeliniská Slovenska (pp. 63−68). Bratislava: Daphne - Inštitút aplikovanej ekológie.Search in Google Scholar

Cooper, J.N., Anderson, J.G. & Campbell C.D. (2002). How resilient are microbial communities to temperature changes during composting? In H. Insam, N. Riddech & S. Klammer (Eds.), Microbiology of Composting (pp. 3−16). Berlin: Springer. DOI: 10.1007/978-3-662-08724-4_1.10.1007/978-3-662-08724-4_1Search in Google Scholar

Frostegård, Å. & Bååth E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils, 22, 59-65. DOI: 10.1007/BF00384433.10.1007/BF00384433Search in Google Scholar

Frostegård, Å., Tunlid, A. & Bååth E. (2011). Use and misuse of PLFA measurements in soils. Soil Biol. Biochem., 43, 1621-1625. DOI: 10.1016/j.soilbio.2010.11.021.10.1016/j.soilbio.2010.11.021Search in Google Scholar

Frouz, J., Elhottová, D., Baldrián, P., Chroňáková, A., Lukešová, A., Nováková, A. & Krištůfek V. (2013). Soil microflora development in post-mining sites. In J. Frouz (Ed.), Soil biota and ecosystem development in post mining sites (pp. 105-131). CRC Press. DOI: 10.1201/b15502-8.10.1201/b15502-8Search in Google Scholar

Galvánek, D. (Ed.) (2007). Unique botanical areas in Slovakia (in Slovak). Bratislava: Daphne - Inštitút aplikovanej ekológie.Search in Google Scholar

Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton W.J. (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. DOI: 10.1046/j.1365-2486.2000.00349.x.10.1046/j.1365-2486.2000.00349.xSearch in Google Scholar

Hajjar, R., Jarvis, D.I. & Gemmill-Herren B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ., 123, 261-270. DOI: 10.1016/j.agee.2007.08.003.10.1016/j.agee.2007.08.003Search in Google Scholar

Hanajík, P. & Fritze H. (2009). Effects of forest management on soil properties at windthrow area in Tatra National Park (TANAP). Acta Environmentalica Universitatis Comenianae, 17(2), 36-46.Search in Google Scholar

Hedrick, D.B., Peacock, A.D. & White D.C. (2007). Lipid analyses for viable microbial biomass, community composition, metabolic status, and in situ metabolism. In C.J. Hurst, R.L. Crawford, J.L. Garland, D.A. Lipson, A.L. Mills & L.D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 112−125). Washington: ASM Press.Search in Google Scholar

Högberg, M.N., Högberg, P. & Myrold D.D. (2006). Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia, 150, 590-601. DOI: 10.1007/s00442-006-0562-5.10.1007/s00442-006-0562-517033802Search in Google Scholar

Holmes, A.J., Roslev, P., McDonald, I.R., Iversen, N., Henriksen, K. & Murrell J.C. (1999). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol., 65, 3312-3318.10.1128/AEM.65.8.3312-3318.19999149710427012Search in Google Scholar

Hultman, J., Vasara, T., Partanen, P., Kurola, J., Kontro, M.H., Paulin, L., Auvinenm, P. & Romantschuk M. (2010). Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. J. Appl. Microbiol., 108, 472-487. DOI: 10.1111/j.1365-2672.2009.04439.x.10.1111/j.1365-2672.2009.04439.x19656238Search in Google Scholar

IMCG-International Mire Conservation Group (2015). Threatened Peatlands of the World, Natural reserve Rojkovské rašelinisko, Rojkov Fen Nature Reserve, SR. http://www.imcg.net/pages/topics/threat/rojkov-fen.php[3.02.2015].Search in Google Scholar

Jankovská, V. (1997). Evolution of peatbogs in Czech and Slovak Republic and cryogenic aspects - facts and hypothesis (in Slovak). In T. Baranec (Ed.), Flóra a vegetácia rašelinísk (pp. 51−54). Nitra: SPU. Search in Google Scholar

Karsisto, M., Kitunen, V., Laiho, R., Laine, J., Tiainen, U., Savitski, M. & Penttilä T. (2002). Identification and quantification of organic fractions in litter and peat organic matter during decomposing processes. In L. Pietola & M. Esala (Eds.), Maa, josta elämme. II. Maaperätieteiden päivät, Helsinki 19.-20.11.2002. Laajennetut abstraktit. Pro Terra, 15, 36−38.Search in Google Scholar

Karsisto, M., Savitski, M., Kitunen, V., Penttilä, T., Laine, J. & Laiho R. (2003). Quantification of organic fractions in litter and peat organic matter. In J.O. Honkanen & P.S. Koponen (Eds.), Proceedings of Sixth Finnish Conference of Environmental Sciences (pp. 135−137). Joensuu, May 8-9, 2003. Current Perspectives in Environmental Science and Technology. Finnish Society for Environmental Sciences, University of Joensuu. Search in Google Scholar

Kates, M. (1986). Techniques in lipidology: isolation, analysis, and identification of lipids. Amsterdam: Elsevier.Search in Google Scholar

King, J.D., White, D.C. & Taylor C.W. (1977). Use of lipid composition and metabolism to examine structure and activity of estuarine detrial microflora. Appl. Environ. Microbiol., 33, 1177-1183.10.1128/aem.33.5.1177-1183.197717084516345244Search in Google Scholar

Korkama, T., Fritze, H., Pakkanen, A. & Pennanen T. (2006). Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol., 173, 798-807. DOI: 10. 1111/j.1469-8137.2006.01957.x.10.1111/j.1469-8137.2006.01957.x17286828Search in Google Scholar

Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen R. (2005). Carbon and decomposition model Yasso for forest soils. Ecol. Model., 189, 168-182. DOI: 10.1016/j.ecolmodel.2005.03.005.10.1016/j.ecolmodel.2005.03.005Search in Google Scholar

Lost, S., Makeschin, F., Abiy, M. & Haubrich F. (2008). Biotic soil activities. In E. Beck, J. Bendix, I. Kottke, F. Makeschin & R. Mosandl (Eds.), Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies, 198, 217−227. DOI: 10.1007/978-3-540-73526-7.10.1007/978-3-540-73526-7Search in Google Scholar

Madan, R., Pankhurst, C., Hawke, B. & Smith S. (2002). Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol. Biochem., 34, 125-128. DOI: 10.1016/S0038-0717(01)00151-1.10.1016/S0038-0717(01)00151-1Search in Google Scholar

Maron, P. A., Mougel, C. & Ranjard L. (2011). Soil microbial diversity: Methodological strategy, spatial overview and functional interest. C. R. Biol., 334, 403-411. DOI: 10.1016/j.crvi.2010.12.003.10.1016/j.crvi.2010.12.003Search in Google Scholar

Mohanty, S.R., Bodelier, P.L.E. & Corad V.F.R. (2006). Differential effects of nitrogenous fertilizers on methaneconsuming microbes in rice field and forest soils. Appl. Environ. Microbiol., 72, 1346-1354. DOI: 10.1128/AEM.72.2.1346-1354.2006.10.1128/AEM.72.2.1346-1354.2006Search in Google Scholar

Palojärvi, A. (2006). Phospholipid Fatty Acid (PLFA) analyses. In J. Bloem, D.W. Hopkins & A. Benedetti (Eds.), Microbiological methods for assessing soil quality (pp. 204−211). Wallingford: CABI Publishing.Search in Google Scholar

Pinkart, H.C., Ringelberg, D.B., Piceno, Y.M. Macnaughton, S.J. & White D.C. (2002). Biochemical approaches to biomass measurements and community structure analysis. In C.J. Hurst (Ed.), Manual of environmental microbiology (pp. 101-113). Washington: ASM Press.Search in Google Scholar

Ringelberg, D.B., Stair, J.O., Almeida, J., Norby, R.J., O’Neill, E.G. & White D.C. (1997). Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J. Environ. Qual., 26, 495-503. DOI: 10.2134/jeq1997.0047242500. 2600020022x.Search in Google Scholar

Rousk, J., Brookes, P.C. & Bååth E. (2010). The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem., 42, 516-520. DOI: 10.1016/j.soilbio.2009.11.026.10.1016/j.soilbio.2009.11.026Search in Google Scholar

Ryan, M.G., Melillo, J.M. & Ricca A. (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Can. J. For. Res., 20, 166-171. DOI: 10.1139/x90-023.10.1139/x90-023Search in Google Scholar

Sakamoto, K., Iijima, R. & Higuchi R. (2004). Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbusbular mycorrhizal fungus Gigaspora rosea. Soil Biol. Biochem., 36, 1827-1834. DOI: 10.1016/j.soilbio.2004.04.037.10.1016/j.soilbio.2004.04.037Search in Google Scholar

Shotyk, W., Goodsite, M.E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C. & Hansen T.S. (2003). Anthropogenic contributions to atmospheric Hg, Pb, and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geoch. Cosm. Acta, 67, 3991-4011. DOI: 10.1016/S0016-7037(03)00409-5.10.1016/S0016-7037(03)00409-5Search in Google Scholar

Stanová, V. (2000). Current distribution and threats to peatlands in Slovakia (in Slovak). In V. Stanová (Ed.), Rašeliniská Slovenska (pp. 3-9). Bratislava: DAPHNE - Inštitút aplikovanej ekológie.Search in Google Scholar

Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Haberhauer, G. & Gerzabek M.H. (2007). An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett., 5, 9−12. DOI: 10.1007/s10311-006-0079-5.10.1007/s10311-006-0079-5Search in Google Scholar

ter Braak, C.J.F. (1994). Basic theory and linear methods. Canonical community ordination. Part I. Ecoscience, 1, 127-140. 10.1080/11956860.1994.11682237Search in Google Scholar

ter Braak, C.J.F. & Smilauer P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Itaca: Microcomputer power. www.canoco.com.Search in Google Scholar

Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., Smith, S., Fyles, J., Wein, R., Camire, C., Duschene, L., Kozak, L., Kranabetter, M. & Visser S. (2002). Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. For. Res., 32, 789-804. DOI: 10.1139/x01-117.10.1139/x01-117Search in Google Scholar

Vallejo, V.E., Arbeli, Z., Terán, W., Lorenz, N., Dick, R.P. & Roldan F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric. Ecosyst. Environ., 150, 139-148. DOI: 10.1016/j.agee.2012. 01.022.Search in Google Scholar

Van Roon, M.R. (2012). Wetlands in the Netherlands and New Zealand: Optimising biodiversity and carbon sequestration during urbanisation. J. Environ. Manag., 101, 143−150. DOI: 10.1016/j.envman.2011.08.026.Search in Google Scholar

Vávřová, P., Penttilä, T. & Laiho R. (2009). Decomposition of Scots pine fine woody debris in boreal conditions:Implications for estimating carbon pools and fluxes. For. Ecol. Manag., 257, 401-412. DOI: 10.1016/j.foreco.2008.09.017.10.1016/j.foreco.2008.09.017Search in Google Scholar

Weiss, R., Shurpali, N.J., Sallantaus, T., Laiho, R., Laine, J. & Alm J. (2006). Simulation of water table level and peat temperature in boreal peatlands. Ecol. Model., 192, 441-456. DOI: 10.1016/j.ecolmodel.2005.07.016.10.1016/j.ecolmodel.2005.07.016Search in Google Scholar

Welc, M., Frossard, E., Egli, S., Bünemann, E.K. & Jansa J. (2014). Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biol. Biochem., 74, 21-30. DOI: 10.1016/j.soilbio.2014.02.014.10.1016/j.soilbio.2014.02.014Search in Google Scholar

White, D.C., Davis, W.M., Nickels, J.S., King, J.D. & Bobbie R.J. (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40, 51-62. DOI: 10.1007/BF00388810.10.1007/BF00388810Search in Google Scholar

White, D.C., Pinkart, H.C. & Ringelberg D.B. (1997). Biomass measurements: biochemical approaches. In C.H. Hurst, G. Knudsen, M. McInerney, L.D. Stetzenbach & M. Walter (Eds.), Manual of environment microbiology (pp. 91-101). Washington: American Society for Microbiology Press.Search in Google Scholar

Wieder, R.K. & Starr S.T. (1998). Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci. Plant Anal., 29, 847-857. DOI: 10.1080/00103629809369990.10.1080/00103629809369990Search in Google Scholar

Wilson, L., Wilson, J., Holden, J., Johnstone, I., Armstrong, A. & Morris M. (2011). Ditch blocking, water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci. Total Environ., 409, 2010-2018. DOI: 10.1016/j.scitotenv.2011.02.036.10.1016/j.scitotenv.2011.02.036Search in Google Scholar

Zak, D.R., Ringelberg, D.B., Pregitzer, K.S., Randlett, D.L., White, D.C. & Curtis P.S. (1996). Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol. Appl., 6, 257-262. DOI: 10.2307/2269568.10.2307/2269568Search in Google Scholar

Zelles, L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere, 35, 275-294. DOI: 10.1016/S0045-6535(97)00155-0.10.1016/S0045-6535(97)00155-0Search in Google Scholar

Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils, 29, 111-129. DOI: 10.1007/s003740050533.10.1007/s003740050533Search in Google Scholar

Zogg, G.P., Zak, D.R., Ringelberg, D.B., MacDonald, N.W., Pregitzer, K.S. & White D.C. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J., 61, 475-481. DOI: 10.2136/sssaj1997.03615995006100020015x.10.2136/sssaj1997.03615995006100020015xSearch in Google Scholar

eISSN:
1337-947X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography