Open Access

Natural Flavonoids as Potential Photosensitizers for Dye-Sensitized Solar Cells


Cite

[1] Burri P. Unconventionals in Europe: best practice vs. worst case - the conflict between facts and public perception. Ecol Chem Eng S. 2016;23:377-386. DOI: 10.1515/eces-2016-0026.10.1515/eces-2016-0026Open DOISearch in Google Scholar

[2] Rodziewicz T, Zaremba A, Wacławek M. Photovoltaics: Solar energy resources and the possibility of their use. Ecol Chem Eng S. 2016;23:9-32. DOI: 10.1515/eces-2016-0001.10.1515/eces-2016-0001Open DOISearch in Google Scholar

[3] Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, et al. Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl. 2019;27:3-12. DOI: 10.1002/pip.3102.10.1002/pip.3102Open DOISearch in Google Scholar

[4] Umale S, Sudhakar V, Sontakke SM, Krishnamoorthy K, Pandit AB. Improved efficiency of DSSC using combustion synthesized TiO2. Mater Res Bull. 2019;109:222-226. DOI: 10.1016/j.materresbull.2018.09.044.10.1016/j.materresbull.2018.09.044Open DOISearch in Google Scholar

[5] Selvaraj P, Baig H, Mallick TK, Siviter J, Montecucco A, Li W, et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol Energ Mat Sol C. 2018;175:29-34. DOI: 10.1016/j.solmat.2017.10.006.10.1016/j.solmat.2017.10.006Open DOISearch in Google Scholar

[6] Qi K, Liu S, Chen Y, Xia B, Li G. A simple post-treatment with urea solution to enhance the photoelectric conversion efficiency for TiO2 dye-sensitized solar cells. Sol Energ Mat Sol C. 2018;183:193-199. DOI: 10.1016/j.solmat.2018.03.038.10.1016/j.solmat.2018.03.038Open DOISearch in Google Scholar

[7] Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew Sust Energ Rev. 2017;68:234-246. DOI: 10.1016/j.rser.2016.09.097.10.1016/j.rser.2016.09.097Open DOISearch in Google Scholar

[8] Fan K, Liu M, Peng T, Ma L, Dai K. Effects of paste components on the properties of screen-printed porous TiO2 film for dye-sensitized solar cells. Renew Energ. 2010;35:555-561. DOI: 10.1016/j.renene.2009.07.010.10.1016/j.renene.2009.07.010Search in Google Scholar

[9] Grätzel M. Photoelectrochemical cells. Nature 2001;414:338-344. DOI: 10.1038/35104607.10.1038/35104607Open DOISearch in Google Scholar

[10] Ardo S, Sun Y, Staniszewski A, Castellano FN, Meyer GJ. Stark effects after excited-state interfacial electron transfer at sensitized TiO2 nanocrystallites. J Am Chem Soc. 2010;132(19):6696-6709. DOI: 10.1021/ja909781g.10.1021/ja909781gSearch in Google Scholar

[11] Cappel UB, Feldt SM, Schöneboom J, Hagfeldt A, Boschloo G. The influence of local electric fields on photoinduced absorption in dye-sensitized solar cells. J Am Chem Soc. 2010;132(26):9096-9101. DOI: 10.1021/ja102334h.10.1021/ja102334hOpen DOISearch in Google Scholar

[12] Zdyb A, Krawczyk S. Molecule-solid interaction: Electronic states of anthracene-9-carboxylic acid adsorbed on the surface of TiO2. Appl Surf Sci. 2010;256:4854-4858. DOI: 10.1016/j.apsusc.2010.01.116.10.1016/j.apsusc.2010.01.116Open DOISearch in Google Scholar

[13] Gaoa P, Tsao HN, Teuscher J, Grätzel M. Organic dyes containing fused acenes as building blocks: Optical, electrochemical and photovoltaic properties. Chinese Chem Lett. 2018;29:289-292. DOI: 10.1016/j.cclet.2017.09.056.10.1016/j.cclet.2017.09.056Open DOISearch in Google Scholar

[14] Singh LK, Koiry BP. Natural dyes and their effect on efficiency of TiO2 based DSSCs: a comparative study. Mater Today Proc. 2018;5:2112-2122. DOI: 10.1016/j.matpr.2017.09.208.10.1016/j.matpr.2017.09.208Open DOISearch in Google Scholar

[15] Zdyb A, Krawczyk S. Adsorption and electronic states of morin on TiO2 nanoparticles. Chem Phys. 2014;443:61-66. DOI: 10.1016/j.chemphys.2014.08.009.10.1016/j.chemphys.2014.08.009Open DOISearch in Google Scholar

[16] Zdyb A, Krawczyk S. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2016;157:197-203. DOI: 10.1016/j.saa.2016.01.006.10.1016/j.saa.2016.01.006Open DOISearch in Google Scholar

[17] Kamat PV, Bedja I, Hotchandani S. Photoinduced charge transfer between carbon and semiconductor clusters. One-electron reduction of C60 in colloidal TiO2 semiconductor suspensions. J Phys Chem.1994;98:9137-9142. DOI: 10.1021/j100088a008.10.1021/j100088a008Open DOISearch in Google Scholar

[18] Falkovskaia E, Sengupta PK, Kasha M. Photophysical induction of dual fluorescence of quercetin and related hydroxyflavones upon intermolecular H-bonding to solvent matrix. Chem Phys Lett. 1998;297:109-114. DOI: 10.1016/S0009-2614(98)01112-9.10.1016/S0009-2614(98)01112-9Open DOISearch in Google Scholar

[19] Protti S, Mezzetti A, Cornard JP, Lapouge Ch, Fagnoni M. Hydrogen bonding properties of DMSO in ground-state formation and optical spectra of 3-hydroxyflavone anion. Chem Phys Lett. 2008;467:88-93. DOI: 10.1016/j.cplett.2008.11.005.10.1016/j.cplett.2008.11.005Open DOISearch in Google Scholar

[20] Hamadanian M, Safaei-Ghomi J, Hosseinpour M, Masoomi R, Jabbari V. Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater Sci Semicond Process. 2014;27:733-739. DOI.org/10.1016/j.mssp.2014.08.017.10.1016/j.mssp.2014.08.017Open DOISearch in Google Scholar

[21] Sönmezoğlu S, Akyűrek C, Akin S. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers. J Phys D: Appl Phys. 2012;45:425101-425108. DOI: 10.1088/0022-3727/45/42/425101.10.1088/0022-3727/45/42/425101Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English