Cite

[1] Biegańska M, Cierpiszewski R. Utilization of agricultural and industrial wastes for metal removal from aqueous solutions. Polish J Chem Technol. 2011;13,1:20-22. DOI: 10.2478/V10026-011-0004.10.2478/V10026-011-0004Open DOISearch in Google Scholar

[2] Argun ME, Dursun S, Ozdemir C, Karatas M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J Hazard Mater. 2007;141:77-85. DOI: 10.1016/J.Jhazmat.2006.06.095.10.1016/j.jhazmat.2006.06.09516879919Open DOISearch in Google Scholar

[3] Rozada F, Otero M, Morán A, García AI. Adsorption of heavy metals onto sewage sludge-derived materials. Bioresour Technol. 2008;99:6332-6338. DOI: 10.1016/j.biortech.2007.12.015.10.1016/j.biortech.2007.12.01518234495Open DOISearch in Google Scholar

[4] Meena AK, Kadirvelu K, Mishra GK, Rajagopal C, Nagar PN. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. J Hazard Mater. 2008;150:619-625. DOI: 10.1016/j.jhazmat.2007.05.011.10.1016/j.jhazmat.2007.05.01117574736Open DOISearch in Google Scholar

[5] Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K. Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. J Hazard Mater. 2009;163:245-250. DOI: 10.1016/j.jhazmat.2008.06.084.10.1016/j.jhazmat.2008.06.08418684562Open DOISearch in Google Scholar

[6] Dhakal RP, Ghimire KN, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy. 2005;79:182-190. DOI: 10.1016/j.hydromet.2005.06.007.10.1016/j.hydromet.2005.06.007Open DOISearch in Google Scholar

[7] Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T. Adsorptive separation of arsenate and aresnite anions from aqueous medium by using orange waste. Water Res. 2003;37:4945-4953. DOI: 10.1016/j.watres.2003.08.029.10.1016/j.watres.2003.08.02914604641Open DOISearch in Google Scholar

[8] Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Biosorption of heavy metals by chemically activated alga Fucus Vesiculosus. J Chem Technol Biotechnol. 2005;80:1403-1407. DOI: 10.1002/jctb.1342.10.1002/jctb.1342Search in Google Scholar

[9] Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Le Deit H, Kanellopoulos NK. Heavy metal sorption by calcium alginate beads from Laminaria Digitata. J Hazard Mater. 2006;B137:1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017.10.1016/j.jhazmat.2006.05.01716797834Open DOISearch in Google Scholar

[10] Papageorgiou SK, Kouvelos EP, Katsaros FK. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination. 2008;224:293-306. DOI: 10.1016/j.desal.2007.06.011.10.1016/j.desal.2007.06.011Search in Google Scholar

[11] Lai Y-L, Annadurai G, Huang F-H, Lee J-F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresour Technol. 2008; 99(14):6480-6487. DOI: 10.1016/j.biortech.2007.11.041.10.1016/j.biortech.2007.11.04118248987Open DOISearch in Google Scholar

[12] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-2565. DOI: 10.1016/j.biortech.2007.04.036.10.1016/j.biortech.2007.04.03617570656Open DOISearch in Google Scholar

[13] Chojnacka K. Biosorption and bioaccumulation - The prospects for practical applications. Environ Int. 2010;36:299-307. DOI: 10.1016/j.envint.2009.12.001.10.1016/j.envint.2009.12.00120051290Open DOISearch in Google Scholar

[14] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.00722245248Open DOISearch in Google Scholar

[15] Huang D, Wang W, Wang A. Removal of Cu2+ and Zn2+ ions from aqueous solution using sodium alginate Adsorption Sci Technol. 2013;31(7):611-624. DOI: and attapulgite composite hydrogels. 10.1260/0263-6174.31.7.611.10.1260/0263-6174.31.7.611Open DOISearch in Google Scholar

[16] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22:15386-15415. DOI: 10.1007/s11356-015-5278-9.10.1007/s11356-015-5278-926315592Open DOISearch in Google Scholar

[17] Jain CK, Malik DS, Yadav AK. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3:495-523. DOI: 10.1007/s40710-016-0143-5.10.1007/s40710-016-0143-5Open DOISearch in Google Scholar

[18] Khan TA, Mukhlif AA, Khan EA, Sharma DK. Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model Earth Syst Environ. 2016;2:117. DOI: 10.1007/s40808-016-0157-z.10.1007/s40808-016-0157-zOpen DOISearch in Google Scholar

[19] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007Open DOISearch in Google Scholar

[20] Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29:211-221. DOI: 10.1007/s10811-016-0916-2.10.1007/s10811-016-0916-2Open DOISearch in Google Scholar

[21] Kłos A. Determination of sorption properties of heavy metals in various biosorbents. Ecol Chem Eng S. 2018;25(2):201-216. DOI: 10.1515/eces-2018-0013.10.1515/eces-2018-0013Open DOISearch in Google Scholar

[22] Chen D, Lewandowski Z, Roe F, Surapaneni P. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnol Bioeng. 1993;41:755-760. DOI: 10.1002/bit.260430212.10.1002/bit.260430212Open DOISearch in Google Scholar

[23] Lewandowski Z, Roe F. Communication to the editor. Diffusivity of Cu2+ in calcium alginate gel beads: recalculation. Biotechnol Bioeng. 1994;43:186-187. DOI: 10.1002/bit.260430213.10.1002/bit.260430213Open DOISearch in Google Scholar

[24] Konishi Y, Shimaoka J, Asai S. Sorption of rare-earth ions on biopolymer gel beads of alginic acid. Reactive Functional Polymers. 1998;36:197-206.10.1016/S1381-5148(97)00103-XSearch in Google Scholar

[25] Ibanez JP, Umetsu Y. Uptake of copper from extremely dilute solutions by alginate sorbent material: an alternative for enviromental control. Proc Copper 99-Cobre 99 Int Environ Conf. 1999; 387-397. www.jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902146055619979&rel=0.Search in Google Scholar

[26] Veglio F, Esposito A, Reverberi AP. Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy. 2002;65:43-57. DOI: 10.1016/S0304-386X(02)00064-6.10.1016/S0304-386X(02)00064-6Open DOISearch in Google Scholar

[27] Kwiatkowska-Marks S, Wójcik M, Kopiński L. Biosorption of heavy metals on alginate beads. Przem Chem. 2011;90(10):1924-1930. www.bwmeta1.element.baztech-d10e4e16-2e7d-4d6d-a346-a7b1ca859142.Search in Google Scholar

[28] Arica MY, Bayramoglu G, Yilmaz M, Bektas S, Genc O. Biosorption of Hg2+, Cd2+, and Zn2+ by ca-alginate and immobilized wood-rotting fungus Funalia Trogii. J Hazard Mater. 2004;B109:191-199. DOI: 10.1016/j.jhazmat.2004.03.017.10.1016/j.jhazmat.2004.03.017Open DOISearch in Google Scholar

[29] Apel ML, Torma AE. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. Canad J Chem Eng. 1993;71:652-656. DOI: 10.1002/cjce.5450710419.10.1002/cjce.5450710419Open DOISearch in Google Scholar

[30] Araujo MM, Teixeira JA. Trivalent chromium sorption on alginate beads. Int Biodeterioration Biodegrad. 1997;40:63-74. DOI: 10.1016/s0964-8305(97)00064-4.10.1016/s0964-8305(97)00064-4Open DOISearch in Google Scholar

[31] Kwiatkowska-Marks S, Kopiński L, Wójcik M. Conductometric determination of the effective copper ion diffusion coefficient in alginate beads. Inż Aparat Chemiczna. 2011;50,6:9-11. http://inzynieria-aparaturachemiczna.pl/rok-2011-nr-6/.Search in Google Scholar

[32] Klimiuk E, Kuczajowska-Zadrożna M. The effect of poly(vinyl alcohol) on cadmium adsorption and desorption from alginate adsorbents. Polish J Environ Stud. 2002;11,4:375-384. www.agro.icm.edu.pl/agro/element/bwmeta1.element.agro-article-e21e2198-9aae-412a-be4e-1804db34c293?q=bwmeta1.element.agro-number-ddd87f36-30f6-4d53-aaca-2372e24ee9ee.Search in Google Scholar

[33] Wang S, Vincent T, Faur C, Guibal E. Alginate and algal-based beads for the sorption of metal cations: Cu(II) and Pb(II). Int J Mol Sci. 2016;17:1453. DOI: 10.3390/ijms17091453.2759812810.3390/ijms17091453Search in Google Scholar

[34] Arnaud J-P, Lacroix C, Castaigne F. Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme Microbial Technol. 1992;14:715-724. DOI: 10.1016/0141-0229(92)90111-Z.10.1016/0141-0229(92)90111-ZOpen DOISearch in Google Scholar

[35] Volesky B. Biosorption process simulation tools. Hydrometallurgy. 2003;71:179-190. DOI: 10.1016/S0304-386X(03)00155-5.10.1016/S0304-386X(03)00155-5Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English