Cite

[1] Vassilev SV, Eskenazyb GM, Vassilevaa CG. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel. 2000;79:903-921. DOI: 10.1016/S0016-2361(99)00236-7.10.1016/S0016-2361(99)00236-7Open DOISearch in Google Scholar

[2] Yudovich YE, Ketris MP, Chlorine in coal: A review. Int J Coal Geol. 2006;67:127-144. DOI: 10.1016/j.coal.2005.09.004.10.1016/j.coal.2005.09.004Open DOISearch in Google Scholar

[3] Spears DA, Zheng Y. Geochemistry and origin of elements in some UK coals. Int J Coal Geol. 1999;38(3-4):161-179. DOI: 10.1016/S0166-5162(98)00012-3.10.1016/S0166-5162(98)00012-3Open DOISearch in Google Scholar

[4] Vassilev SV, Baxter D, Andersen LK, Vassileva CG. An overview of the chemical composition of biomass. Fuel. 2010;89:913-933. DOI: 10.1016/j.fuel.2009.10.022.10.1016/j.fuel.2009.10.022Open DOISearch in Google Scholar

[5] Tillman, DA, Duong D, Miller B. Chlorine in solid fuels fired in pulverized fuel boilers-sources, forms, reactions, and consequences: A literature review. Energy Fuels. 2009;23(7):3379-3391. DOI: 10.1021/ef801024s.10.1021/ef801024sOpen DOISearch in Google Scholar

[6] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.10.1016/j.jes.2018.09.003Open DOISearch in Google Scholar

[7] Toxicological profile for DDT, DDE, and DDD. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry; Atlanta: 2002. http://www.atsdr.cdc.gov/toxprofiles/tp35.pdf.Search in Google Scholar

[8] van Loon GW, Duffy SJ. Environmental chemistry. Warszawa: WN PWN; 2007. ISBN: 9788301153243.Search in Google Scholar

[9] Jenkins BM, Baxter LL, Miles TR Jr, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54:17-46. DOI: 10.1016/S0378-3820(97)00059-3.10.1016/S0378-3820(97)00059-3Open DOISearch in Google Scholar

[10] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). OJ L 334, 17.12.2010. 17-119. https://eur-lex.europa.eu/eli/dir/2010/75/oj.Search in Google Scholar

[11] Zhang M, Buekens A, Li X. Dioxins from biomass combustion: an overview. Waste Biomass Valor. 2017;8:1-20. DOI 10.1007/s12649-016-9744-5.10.1007/s12649-016-9744-5Open DOISearch in Google Scholar

[12] Wey MY, Liu KY, Yu WJ, Lin CL, Chang FY. Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Manage. 2008;28(2):406-415. DOI: 10.1016/j.wasman.2006.12.008.10.1016/j.wasman.2006.12.00817320369Open DOISearch in Google Scholar

[13] Lundin L, Jansson S. The effects of fuel composition and ammonium sulfate addition on PCDD, PCDF, PCN and PCB concentrations during the combustion of biomass and paper production residuals. Chemosphere. 2014;94:20-26. DOI: 10.1016/j.chemosphere.2013.01.090.10.1016/j.chemosphere.2013.01.09023466088Open DOISearch in Google Scholar

[14] van den Berg M, Birnbaum L, Bosveld AT, Brunström B, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect. 1998;106:775-792. DOI: 10.2307/3434121.10.1289/ehp.9810677515332329831538Open DOISearch in Google Scholar

[15] Lu P, Huang Q, Bourtsalas AC, Themelis NJ, Chi Y, Yan J. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci. 2019;78:13-28. DOI: 10.1016/j.jes.2018.09.003.10.1016/j.jes.2018.09.00330665632Open DOISearch in Google Scholar

[16] Altobelli R, de Oliveira MCL. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros Sci. 2013;76:6-26. DOI: 10.1016/j.corsci.2013.07.013.10.1016/j.corsci.2013.07.013Open DOISearch in Google Scholar

[17] Gruber T, Retschitzegger S, Scharler R, Obernberger I. Dominating high temperature corrosion mechanisms in low alloy steels in wood chips fired boilers. Energy Fuels. 2016;30(3):2385-2394. DOI: 10.1021/acs.energyfuels.5b02290.10.1021/acs.energyfuels.5b02290Open DOISearch in Google Scholar

[18] Theis M, Skrifvars BJ, Zevenhoven M, Hupa M. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: Deposit chemistry. Fuel. 2006;85(14-15):1992-2001. DOI: 10.1016/j.fuel.2006.03.015.10.1016/j.fuel.2006.03.015Open DOISearch in Google Scholar

[19] Fraissler G, Joller M, Brunner T, Obernberger I. Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination. Chem Eng Process. Process Intensification. 2009;8(1):380-388, DOI: 10.1016/j.cep.2008.05.003.10.1016/j.cep.2008.05.003Open DOISearch in Google Scholar

[20] Lecomte T, de la Fuente JFF, Neuwahl F, Canova M, Pinasseau A, Jankov I, et al. Best Available Techniques (BAT). Reference Document for the Large Combustion Plants. Luxembourg: Publications Office of the European Union; 2017. ISBN: 9789279743030. DOI: 10.2760/949.Search in Google Scholar

[21] Weinell CE, Jensen PI, Dam-Johansen K, Livbjerg H. Hydrogen chloride reaction with lime and limestone: kinetics and sorption capacity. Ind Eng Chem Res. 1992;31:164-171. DOI: 10.1021/ie00001a023.10.1021/ie00001a023Open DOISearch in Google Scholar

[22] Zhang C, Wang Y, Yang Z, Xu M. Chlorine emission and dechlorination in co-firing coal and the residue from hydrochloric acid hydrolysis of Discorea zingiberensis. Fuel. 2006;85(14-15):2034-2040. DOI: 10.1016/j.fuel.2006.04.009.10.1016/j.fuel.2006.04.009Open DOISearch in Google Scholar

[23] Wey MY, Chen JC, Wu HY, Yu WJ, Tsai TH. Formations and controls of HCl and PAHs by different additives during waste incineration. Fuel. 2006; 85(5-6):755-763. DOI: 10.1016/j.fuel.2005.09.011.10.1016/j.fuel.2005.09.011Open DOISearch in Google Scholar

[24] Fujita S, Suzuki K, Ohkawa M, Shibasaki Y, Mori T. Reaction of hydrogrossular with hydrogen chloride gas at high temperature. Chem Mater. 2001;13:2523-2527. DOI: 10.1021/cm000863r.10.1021/cm000863rOpen DOISearch in Google Scholar

[25] Olek M, Baron J, Żukowski W. Thermal decomposition of selected chlorinated hydrocarbons during gas combustion in fluidized bed. Chem Central J. 2013;7:2. DOI: 10.1186/1752-153X-7-2.10.1186/1752-153X-7-2Open DOISearch in Google Scholar

[26] Tõnsuaadu K, Gross KA, Pluduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110(2):647-659. DOI: 10.1007/s10973-011-1877-y.10.1007/s10973-011-1877-yOpen DOISearch in Google Scholar

[27] Baron J, Bulewicz EM, Zabagło J, Żukowski W. Propagation of reaction between bubbles with a gas burning in a fluidised bed. Flow Turbul Combust. 2012;88(4):479-502. DOI: 10.1007/s10494-011-9362-z.10.1007/s10494-011-9362-zOpen DOISearch in Google Scholar

[28] Żukowski W. A simple model for explosive combustion of premixed natural gas with air in a bubbling fluidized bed of inert sand. Combust Flame. 2003;134:399-409. DOI: 10.1016/S0010-2180(03)00139-1.10.1016/S0010-2180(03)00139-1Open DOISearch in Google Scholar

[29] Baron J, Żukowski W, Migas P. Premixed LPG + air combustion in a bubbling FBC with variable content of solid particles in the bubbles. Flow Turbul Combust. 2018;101(3):953-969. DOI: 10.1007/s10494-018-9925-3.10.1007/s10494-018-9925-3Open DOISearch in Google Scholar

[30] Deydier E, Guilet R, Sarda S, Sharrock P. Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”. J Hazard Mater. 2005;121(1-3):141-148. DOI: 10.1016/j.jhazmat.2005.02.003.10.1016/j.jhazmat.2005.02.003Open DOISearch in Google Scholar

[31] Etok SE, Valsami-Jones E, Wess TJ, Hiller JC, et al. Structural and chemical changes of thermally treated bone apatite. J Mater Sci. 2007;42:9807. DOI: 10.1007/s10853-007-1993-z.10.1007/s10853-007-1993-zOpen DOISearch in Google Scholar

[32] Gulyurtlu I, Pinto F, Abelha P, Lopes H, Crujeira AT. Pollutant emissions and their control in fluidised bed combustion and gasification. In: Scala F, editor. Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification. Cambridge: Woodhead Publishing; 2013. ISBN: 9780857095411. DOI: 10.1533/9780857098801.2.435.10.1533/9780857098801.2.435Search in Google Scholar

[33] Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807-1813. DOI: 10.1016/S0142-9612(99)00076-9.1050919110.1016/S0142-9612(99)00076-9Search in Google Scholar

[34] Demnati I, Grossin D, Combes C, Parco M, Braceras I, Rey C. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings. Biomed Mater. 2012;7(5):1-10. DOI:10.1088/1748-6041/7/5/054101.10.1088/1748-6041/7/5/05410122971953Open DOISearch in Google Scholar

[35] Moseke C, Gbureck U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia. 2010;6(10): 3815-3823. DOI: 10.1016/j.actbio.2010.04.020.10.1016/j.actbio.2010.04.0202043886920438869Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English