Open Access

Impact of Shelterbelts on Oxidation-Reduction Properties and Greenhouse Gases Emission from Soils


Cite

[1] Szajdak LW, Gaca W. Nitrate reductase activity in soil under shelterbelt and an adjoining cultivated field. Chem Ecol. 2010;26:123-134. DOI: 10.1080/02757540.2010.501028.10.1080/02757540.2010.501028Open DOISearch in Google Scholar

[2] Ryszkowski L, Kędziora A. Modification of water flows and nitrogen fluxes by shelterbelts. Ecol Eng. 2007;29:388-400. DOI: 10.1016/j.ecoleng.2006.09.023.10.1016/j.ecoleng.2006.09.023Open DOISearch in Google Scholar

[3] Recommendation No. R(94)6 of the Committee of Ministers to Member States for Sustainable Development and use of the Countryside with the Particular Focus on the Safeguarding of Wildlife and Landscapes (1994). Council of Europe Committee of Ministers. https://rm.coe.int/16804c1bdf.Search in Google Scholar

[4] Pedersen HD, Postma D, Jakobsen R, Larsen O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta. 2005;69:3967-3977. DOI: 10.1016/j.gca.2005.03.016.10.1016/j.gca.2005.03.016Open DOISearch in Google Scholar

[5] Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils. 2005;41:379-388. DOI: 10.1007/s00374-005-0858-3.10.1007/s00374-005-0858-3Open DOISearch in Google Scholar

[6] Marszałek M, Kowalski Z, Makara A. Emission of greenhouse gases and odorants from pig slurry - effect on the environment and methods of its reduction. Ecol Chem Eng S. 2018;25(3):383-394. DOI: 10.1515/eces-2018-0026.10.1515/eces-2018-0026Open DOISearch in Google Scholar

[7] Szajdak L, Gaca W, Karg M. Impact of the age of shelterbelts and the composition of plants on the dissimilatory nitrate reductase activity in soils. Pol J Soil Sci. 2005;38:135-144. http://www.pjss.org/artykuly/pjss/Polish_Journal_of_Soil_Science_2005_38_2_135.pdf.Search in Google Scholar

[8] Malinowski M, Wolny-Koładka K. Microbiological and energetic assessment of the effects of the biodrying of fuel produced from waste. Ecol Chem Eng S. 2017;24(4):551-564. DOI: 10.1515/eces-2017-0036.10.1515/eces-2017-0036Search in Google Scholar

[9] Khalil MI, Baggs EM. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol Biochem. 2005;37:1785-1794. DOI: 10.1016/j.soilbio.2005.02.012.10.1016/j.soilbio.2005.02.012Open DOISearch in Google Scholar

[10] Das SK, Varma A. Role of enzymes in maintaining soil health. In: Shukla G, Varma A, editors. Soil Enzymology, Soil Biology 22. Berlin Heidelberg: Springer-Verlag; 2011. DOI: 10.1007/978-3-642-14225-3_2.10.1007/978-3-642-14225-3_2Search in Google Scholar

[11] Singh DK, Kumar S. Nitrate reductase arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamipirid treatments. Chemosphere. 2008;71:412-418. DOI: 10.1016/j.chemosphere.2007.11.005.10.1016/j.chemosphere.2007.11.00518082867Open DOISearch in Google Scholar

[12] Kool DM, Dolfing J, Wrage N, Van Groenigen JW. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem. 2011;43:174-178. DOI: 10.1016/j.soilbio.2010.09.030.10.1016/j.soilbio.2010.09.030Open DOISearch in Google Scholar

[13] Dec J, Haider K, Bollag JM. Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere. 2003;52:549-556. DOI: 10.1016/S0045-6535(03)00236-4.10.1016/S0045-6535(03)00236-4Open DOISearch in Google Scholar

[14] Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biol Biochem. 2002;34:651-660. DOI: 10.1016/S0038-0717(01)00227-9.10.1016/S0038-0717(01)00227-9Open DOISearch in Google Scholar

[15] Meysner T, Szajdak LW. Impact of a forest island and Robinia pseudoacacia afforestation on peroxidase activity and iron ions in soils. In: Szajdak LW, Karabanov AK, editors. Physical, Chemical and Biochemical Processes in Soils. Poznań: Prodruk; 2010. ISBN: 9788361607564.Search in Google Scholar

[16] Butterbach-Bahl K, Willibald G, Papen H. Plant Soil. 2002;240:105-116. DOI: 10.1023/A:1015870518723.10.1023/A:1015870518723Open DOISearch in Google Scholar

[17] Šimek M, Jíšová L, Hopkins DW. Soil Biol Biochem. 2002;34:1227-1234. DOI: 10.1016/S0038-0717(02)00059-7.10.1016/S0038-0717(02)00059-7Open DOISearch in Google Scholar

[18] Partyka T, Hamkalo Z. Estimation of oxidizing ability of organic matter of forest and arable soil. Zemdirbyste. 2010;97:33-40.Search in Google Scholar

[19] Périé C, Ouimet R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci. 2008;88:315-325. DOI: 10.4141/CJSS06008.10.4141/CJSS06008Open DOISearch in Google Scholar

[20] Grybos M, Davranche M, Gruau G, Petitjean P. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci. 2007;314:490-501. DOI: 10.1016/j.jcis.2007.04.062.10.1016/j.jcis.2007.04.062Open DOISearch in Google Scholar

[21] Tian L, Shi W. Soil peroxidase regulates organic matter decomposition through improving the accessibility of reducing sugars and amino acids. Biol Fertil Soils. 2014.50: 785-794. DOI: 10.1007/s00374-014-0903-1.10.1007/s00374-014-0903-1Open DOISearch in Google Scholar

[22] Askin T, Kizilkaya R. Soil basal respiration and dehydrogenase activity of aggregates: a study in a toposequence of pasture soils. Zemdirbyste. 2009;96:98-112.Search in Google Scholar

[23] Kesik M, Ambus P, Baritz R, Bruggemann N, Butterbach-Bahl K, Damm M, et al. Inventories of N2O and NO emissions from European forest soils. Biogeosciences. 2005;2:353-375. DOI: 10.5194/bg-2-353-2005.10.5194/bg-2-353-2005Open DOISearch in Google Scholar

[24] Abbasi MK, Adams WA. Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland under field conditions. Soil Biol Biochem. 2000;32:1251-1259. DOI: 10.1016/S0038-0717(00)00042-0.10.1016/S0038-0717(00)00042-0Open DOISearch in Google Scholar

[25] Ullah S, Breitenbeck GA, Faulkner SP. Denitrification and N2O emission from forested and cultivated alluvial clay soil. Biogeochemistry. 2005;73:499-513. DOI: 10.1007/s10533-004-1565-0.10.1007/s10533-004-1565-0Open DOISearch in Google Scholar

[26] Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213-215. DOI: 10.1038/nature07276.10.1038/07276Open DOISearch in Google Scholar

[27] Maryganowa V, Szajdak LW, Tychinskaya L. Hydrophobic and hydrophilic properties of humic acids from soils under shelterbelts of different ages. Chem Ecol. 2010;26(4):25-33. DOI: 10.1080/02757540.2010.501138.10.1080/02757540.2010.501138Open DOISearch in Google Scholar

[28] Szajdak LW, Maryganova V, Skakovskii E, Tychinskaya L. Transformations of organic matter in soils under shelterbelts of different ages in agricultural landscape. In: Szajdak LW, editor. Bioactive Compounds in Agricultural Soils. Switzerland: Springer International Publishing AG; 2016. ISBN: 9783319431062, DOI: 10.1007/978-3-319-43107-9_9.10.1007/978-3-319-43107-9_9Search in Google Scholar

eISSN:
1898-6196
Language:
English