Cite

[1] Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol. 2006;33(7)627-634. DOI: 10.1007/s10295-006-0139-7.10.1007/s10295-006-0139-716761169Open DOISearch in Google Scholar

[2] Massarsky A, Trudeau VL, Moon TW. Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol. 2014;38(3):861-873. DOI: 10.1016/j.etap.2014.10.006.10.1016/j.etap.2014.10.0062546154625461546Open DOISearch in Google Scholar

[3] Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage Assoc. 2010;60(7):770-781. https://www.ncbi.nlm.nih.gov/pubmed/20681424.10.3155/1047-3289.60.7.77020681424Search in Google Scholar

[4] Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P. The release of nanosilver from consumer products used in the home. J Environ Qual. 2010;39(6):1875-1882. https://www.ncbi.nlm.nih.gov/pubmed/21284285.10.2134/jeq2009.0363477391721284285Search in Google Scholar

[5] Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42(11):4133-4139. DOI: 10.1021/es7032718.10.1021/es703271818589977Open DOISearch in Google Scholar

[6] Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardlii. Environ Sci Technol. 2008;42(23):8959-8964. DOI: 10.1021/es801785m.10.1021/es801785m19192825Open DOISearch in Google Scholar

[7] Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabdilis elegans using functional ecotoxicogenomics. Environ Sci Technol. 2009;43(10):3933-3940. https://www.ncbi.nlm.nih.gov/pubmed/19544910.10.1021/es803477u19544910Search in Google Scholar

[8] Percival SL, Woods E, Nutekpor M, Bowler P, Radford A, Cochrane C. Prevalence of silver resistance in bacteria isolated from diabetic foot ulcers and efficacy of silver-containing wound dressings. Ostomy Wound Manage. 2008;54(3):30-40. https://www.ncbi.nlm.nih.gov/pubmed/18382046.Search in Google Scholar

[9] El-Ansary A, Al-Daihan S. On the toxicity of therapeutically used nanoparticles: an overview. J Toxicol. 2009. Article ID 754810. DOI:10.1155/2009/754810.10.1155/2009/754810280933220130771Search in Google Scholar

[10] Greulich C, Kittler S, Epple M, Muhr G, Köller M. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg. 2009;394(3):495-502. DOI: 10.1007/s00423-009-0472-1.10.1007/s00423-009-0472-119280220Search in Google Scholar

[11] Harzevili FD, Chen H. Microbial Biotechnology: Progress and Trends. CRC Press; 2017. ISBN: 9781138748699.10.1201/9781351228701Search in Google Scholar

[12] Kumar BL, Gopal DVRS. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015;5(6):867. DOI: 10.1007/s13205-015-0293-6.10.1007/s13205-015-0293-6462413928324402Open DOISearch in Google Scholar

[13] Zhang S, Wang Q, Wan R, Xie S, Zhejiang J. Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. Univ Sci B. 2011;12(9):760-768. DOI: 10.1631/jzus.B1000440.10.1631/jzus.B1000440316791021887852Open DOISearch in Google Scholar

[14] Chen WY, Wu JH, Lin YY, Huang HJ, Chang JE. Bioremediation potential of soil contaminated with highly substituted polychlorinated dibenzo-p-dioxins and dibenzofurans: microcosm study and microbial community analysis. J Hazard Mater. 2013;261:351-361. DOI: 10.1016/j.jhazmat.2013.07.039.10.1016/j.jhazmat.2013.07.03923959255Open DOISearch in Google Scholar

[15] Xenia ME, Refugio RV. Microorganisms metabolism during bioremediation of oil contaminated soils. J Bioremed Biodegr. 2016;7:340. DOI: 10.4172/2155-6199.1000340.10.4172/2155-6199.1000340Open DOISearch in Google Scholar

[16] Durán M, Faljoni-Alario A, Durán N. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Folia Microbiol (Praha). 2010;55(6):535-547. DOI: 10.1007/s12223-010-0088-4.10.1007/s12223-010-0088-421253897Open DOISearch in Google Scholar

[17] Yang C, Song C, Mulchandani A, Qiao C. Genetic engineering of Stenotrophomonas strain YC-1 to possess a broader substrate range for organophosphates. J Agric Food Chem. 2010;58(11):6762-6766. DOI: 10.1021/jf101105s.10.1021/jf101105s20455565Open DOISearch in Google Scholar

[18] Jiang J, Liu H, Li Q, Gao N, Yao Y, Xu H. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicol Environ Saf. 2015;120:386-393. DOI: 10.1016/j.ecoenv.2015.06.028.10.1016/j.ecoenv.2015.06.02826117363Open DOISearch in Google Scholar

[19] Zinicovscaia I, Rudi L, Valuta A, Cepoi L,Vergel K, Frontasyeva MV, et al. Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S. 2016; 23(4): 559-569. DOI: 10.1515/eces-2016-0039.10.1515/eces-2016-0039Open DOISearch in Google Scholar

[20] Gargi B, Ranjit D, Sufia K. Chromium bioremediation by Alcaligenes faecalis strain P-2 isolated from tannery effluents. J Environ Res Develop. 2015;9:3A. https://www.researchgate.net/publication/288991602.Search in Google Scholar

[21] Ghoreishi G, Alemzadeh A, Mojarrad M, Djavaheri M. Kerosene biodegradation ability and characterization of bacteria isolated from oil-polluted soil and water. J Environ Chem Eng. 2016;4(4):4323-4329. DOI: 10.1016/j.jece.2016.09.035.10.1016/j.jece.2016.09.035Open DOISearch in Google Scholar

[22] Kundu D, Hazra C, Chaudhari A. Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil Sediment Contamin, Int J. 2016;25(6):637-651. DOI: 10.1080/15320383.2016.1190313.10.1080/15320383.2016.1190313Open DOISearch in Google Scholar

[23] Liu W, Luo Y, Teng Y, Li Z, Ma L. Bioremediation of oily sludge-contaminated soil by stimulating indigenous microbes. Environ Geochem Health. 2010;32(1):23-29. DOI: 10.1007/s10653-009-9262-5.10.1007/s10653-009-9262-519363671Open DOISearch in Google Scholar

[24] Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere. 2009;77(2):153-160. DOI: 10.1016/j.chemosphere.2009.06.047.10.1016/j.chemosphere.2009.06.04719647283Open DOISearch in Google Scholar

[25] Sameera V. Novel techniques in the production of industrially imperative products. J Microbial Biochem Technol R1:003. 2011. DOI: 10.4172/1948-5948.R1-003.10.4172/1948-5948.R1-003Open DOISearch in Google Scholar

[26] Padil VVT, Wacławek S, Černík M. Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016; 23(4):533-557. DOI: 10.1515/eces-2016-0038.10.1515/eces-2016-0038Open DOISearch in Google Scholar

[27] Smokey Mountain Remediation and Development Project: Philippines. Poverty Environment Partnership. 25 October 2012. Accessed 24 Oct 2016. http://www.povertyenvironment.net/adb/subprojects/phi-smokey.Search in Google Scholar

[28] Torres, Tetch. “SC upholds Smokey Mountain contract between NHA, R-II”. Inquirer.net. Posted 15 August 2007. Accessed 24 Oct 2016. https://tetchtorres.wordpress.com/2007/08/15/sc-upholds-smokey-mountain-contract-between-nha-r-ii/.Search in Google Scholar

[29] Medina M. The World’s Scavengers: Salvaging for Sustainable Consumption and Production. Lanham, MD [u.a.]: AltaMira Press; 2007. ISBN 0759109419.Search in Google Scholar

[30] Bergey DH, Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology, 9th ed. Baltimore: Williams and Wilkins. 1994. https://archive.org/stream/bergeysmanualofd00amer/bergeysmanualofd00amer_djvu.txt.Search in Google Scholar

[31] Pisapia C, Gerard E, Gerard M, Meñez B. Mineralizing filamentous bacteria from the Porny Bay hydrothermal field give new insights into the functioning of sepentization-based subseafloor ecosystems. Front Microbiol. 2017;8:7. DOI: 10.3389/fmicb.2017.00057.10.3389/fmicb.2017.00057528157828197130Open DOISearch in Google Scholar

[32] Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows. 95/98/NT. Nucl Acids Symp Ser. 1999;41:95-98. http://brownlab.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf.Search in Google Scholar

[33] Hall TA. BioEdit: An important software for molecular biology. GERF Bull Biosci. 2011;2(1):60-61. https://www.gerfbb.com/images/upload/article/pdf/1387127438.Search in Google Scholar

[34] https://www.ncbi.nlm.nih.gov/.Search in Google Scholar

[35] Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9(4):286-298. DOI: 10.1093/bib/bbn013.1837231510.1093/bib/bbn01318372315Search in Google Scholar

[36] Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564-577. DOI: 10.1080/10635150701472164.1765436210.1080/1063515070147216417654362Search in Google Scholar

[37] Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Molecular Biol Evolution. 1992;9:945-967. DOI: 10.1093/oxfordjournals.molbev.a040771.10.1093/oxfordjournals.molbev.a040771Open DOISearch in Google Scholar

[38] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biol Evolution. 2016;33(7):1870-1874. DOI: 10.1093/molbev/msw054.10.1093/molbev/msw054821082327004904Search in Google Scholar

[39] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-791. DOI: 10.1111/j.1558-5646.1985.tb00420.x.10.1111/j.1558-5646.1985.tb00420.x28561359Open DOISearch in Google Scholar

[40] Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168-171. DOI: 10.1016/j.nano.2007.02.001.10.1016/j.nano.2007.02.00117468052Open DOISearch in Google Scholar

[41] Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115-1122. DOI: 10.1007/s00253-009-2159-5.10.1007/s00253-009-2159-5Open DOISearch in Google Scholar

[42] Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A. Influence of nanoparticles on blood-brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl. 2010;106:359-364. DOI: 10.1007/978-3-211-98811-4_65.10.1007/978-3-211-98811-4_65Open DOISearch in Google Scholar

[43] Liau, SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997;25(4):279-283. DOI: 10.1046/j.1472-765X.1997.00219.x.10.1046/j.1472-765X.1997.00219.xOpen DOISearch in Google Scholar

[44] Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomedical Mater Res Part B: Appl Biomaterials. 2000;53(6):621-631. DOI: 10.1002/1097-4636(2000)53:63.0.CO;2-Q.10.1002/1097-4636(2000)53:63.0.CO;2-QOpen DOISearch in Google Scholar

[45] Fox CL, Modak SM. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother. 1974;5(6)582-588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC429018/.10.1128/AAC.5.6.582Search in Google Scholar

[46] Yang W, Shen C, Ji Q, An H, Wang J, Liu Q, Zhang Z. Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology. 2009;20(8):085102. DOI: 10.1088/0957-4484/20/8/085102.19417438Search in Google Scholar

[47] McHugh GL, Moellering RC, Hopkins CC et al. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet. 1975;1(7901):235-240. DOI: 10.1016/S0140-6736(75)91138-1.10.1016/S0140-6736(75)91138-1Open DOISearch in Google Scholar

[48] Gupta A, Matsui K, Lo JF et al. Molecular basis for resistance to silver cations in Salmonella. Nat Med. 1999;5(2):183-188. DOI: 10.1038/5545.993086610.1038/5545Search in Google Scholar

[49] Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003; 27:(2-3):341-353. DOI: 10.1016/S0168-6445(03)00047-0.10.1016/S0168-6445(03)00047-0Open DOISearch in Google Scholar

[50] Gupta A, Phung LT, Taylor DE, Silver S. Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology. 2001;147:3393-3402. DOI: 10.1099/00221287-147-12-3393.10.1099/00221287-147-12-3393Open DOISearch in Google Scholar

[51] Sandegren L, Linkevicius M, Lytsy B, Melhus Å, Andersson DI. Transfer of an Escherichia coli ST131 multiresistance cassette has created a Klebsiella pneumoniae-specific plasmid associated with a major nosocomial outbreak. J Antimicrob Chemother. 2012;67(1):74-83. DOI: 10.1093/jac/dkr405.10.1093/jac/dkr40521990049Open DOISearch in Google Scholar

[52] Sütterlin S. Aspects of Bacterial Resistance to Silver. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1084. Uppsala: Acta Universitatis Upsaliensis. 2015. 64 pp. ISBN 978915549205. https://www.diva-portal.org/smash/get/diva2:796254/FULLTEXT01.pdf.Search in Google Scholar

[53] Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D’Oriano V, et al. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci. 2012;13(8):843-854. DOI: 10.2174/138920312804871120.10.2174/138920312804871120370695623305369Search in Google Scholar

[54] Koebnik R, Locher KP, Van Gelder P. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol. 2000;37(2):239-253. DOI: 10.1046/j.1365-2958.2000.01983.10.1046/j.1365-2958.2000.01983Open DOISearch in Google Scholar

[55] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67(4):593-656. DOI: 10.1128/MMBR.67.4.593-656.2003.10.1128/MMBR.67.4.593-656.200330905114665678Open DOISearch in Google Scholar

[56] Hancock RE, Bell A. Antibiotic uptake into gram-negative bacteria. Eur J Clin Microbiol Infect Dis. 1988;7(6):713-720. DOI: 10.1007/978-3-642-46666-3_6.10.1007/978-3-642-46666-3_6Open DOISearch in Google Scholar

[57] Achouak W, Heulin T, Pages JM. Multiple facets of bacterial porins. FEMS Microbiol Lett. 2001;199(1):1-7.10.1111/j.1574-6968.2001.tb10642.x11356559Search in Google Scholar

[58] Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol. 2002;3(2):77-98. DOI : 10.2174/1389201023378454.10.2174/13892010233784541202226112022261Open DOISearch in Google Scholar

[59] Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Molecular Microbiol. 2000;37(2):219-225. DOI: 10.1046/j.1365-2958.2000.01926.10.1046/j.1365-2958.2000.01926Open DOISearch in Google Scholar

[60] Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Molecular Microbiol. 1996;19(1):101-112. DOI: 10.1046/j.1365-2958.1996.357881.10.1046/j.1365-2958.1996.357881Open DOISearch in Google Scholar

[61] Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 2009;1794(5): 769-81. DOI:10.1016/j.bbapap.2008.10.004.1902677010.1016/j.bbapap.2008.10.004269689619026770Search in Google Scholar

[62] Ren Q, Chen K, Paulsen IT. TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res. 2007;35(D274-D279). DOI: 10.1093/nar/gkl925.10.1093/nar/gkl925174717817135193Open DOISearch in Google Scholar

[63] Huelsenbeck JP, Ronquist F. Bayesian Analysis of Molecular Evolution using MrBayes. In: Statistical Methods in Molecular Evolution. Springer Science & Business Media;2005. DOI: 10.1007/0-387-27733-1_7.10.1007/0-387-27733-1_7Open DOISearch in Google Scholar

[64] Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754-755. DOI: 10.1093/bioinformatics/17.8.754.11524383Search in Google Scholar

[65] Saklani V, Suman, Jain VK. Microbial synthesis of silver nanoparticles: a review. J Biotechnol Biomaterial. 2012;S13:007. DOI: 10.4172/2155-952X.S13-007.10.4172/2155-952X.S13-007Open DOISearch in Google Scholar

[66] Balaji DS, Basavaraja S, Deshpande R, Mahesh D, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticle by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88-92. DOI: 10.1016/j.colsurfb.2008.09.022.10.1016/j.colsurfb.2008.09.02218995994Open DOISearch in Google Scholar

[67] Wani IA, Khatoon S, Ganguly A, Ahmed J, Ganguli AK, Ahmad T. Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull. 2010;45(8):1033-1038. DOI: 10.1016/j.materresbull.2010.03.028.10.1016/j.materresbull.2010.03.028Search in Google Scholar

[68] Esfandiary R, Hunjan JS, Lushington G, Joshi S, Middaugh R. Temperature dependent 2nd derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics. Protein Sci. 2009;18(12):2603-2614. DOI: 10.1002/pro.264.10.1002/pro.264282127819827094Open DOISearch in Google Scholar

[69] Hristovski KD, Nguyen H, Westerhoff PK. Removal of arsenate and 17-ethinyl estradiol (EE2) by iron (hydr) oxide modified activated carbon fibers. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009:44(4):354-361. DOI: 10.1080/10934520802659695.10.1080/1093452080265969519184702Open DOISearch in Google Scholar

[70] Huang J, Cao Y, Liu Z, Deng Z, Tang F, Wang W. Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem Eng J. 2012;180:75-80. DOI: 10.1016/j.cej.2011.11.005.10.1016/j.cej.2011.11.005Open DOISearch in Google Scholar

[71] Khan SB, Marwani, HM, Asiri AM, Bakhsh EM. Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalin Water Treat. 2016;57(41)1-10. DOI: 10.1080/19443994.2015.1109560.10.1080/19443994.2015.1109560Open DOISearch in Google Scholar

[72] Liu M, Chen C, Hu J, Wu X, Wang X. Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal. J Phys Chem C. 2011;115(51):25234-25240. DOI: 10.1021/jp208575m.10.1021/jp208575mOpen DOISearch in Google Scholar

[73] Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, et al. Magnetic nanocomposites for environmental remediation. Adv Powder Technol. 2013;24(2):459-467. DOI: 10.1016/j.apt.2012.10.012.10.1016/j.apt.2012.10.012Open DOISearch in Google Scholar

[74] Yadav KJ, Singh K, Gupta N, Kumar V. A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci. 2017;8(2):740-757. https://www.jmaterenvironsci.com/Document/vol8/vol8_N2/78-JMES-2831-Yadav.pdf.Search in Google Scholar

[75] Watlington K. U.S. Environmental Protection Agency, August 2005; www.epa.gov; www.clu-in.org. Accessed June 2017.Search in Google Scholar

eISSN:
1898-6196
Language:
English