Cite

[1] Rombel-Bryzek A, Rajfur M, Zhuk O. The impact of copper ions on oxidative stress in garden cress Lepidium sativum. Ecol Chem Eng S. 2017;24:627-636. DOI: 10.1515/eces-2017-0041.10.1515/eces-2017-0041Open DOISearch in Google Scholar

[2] Zinicovscaia I, Rudi L, Valuta A, Cepot L, Vergel K, Frontasyeva MV, et al. Biochemical changes in Nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S. 2016;23:559-569. DOI: 10.1515/eces-2016-0039.10.1515/eces-2016-0039Open DOISearch in Google Scholar

[3] Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol. 2005;17:21-34. DOI: 10.1590/S1677-04202005000100003.10.1590/S1677-04202005000100003Open DOISearch in Google Scholar

[4] ATSDR, Agency for Toxic Substance and Disease Registry, U.S. Toxicological Profile for Cadmium. Department of Health and Humans Services, Atlanta, Georgia, USA: Public Health Service, Centers for Disease Control;2005.Search in Google Scholar

[5] Kumar R, Mishra RK, Mishra V, Qidwai A, Pandey A, Shukla SK, et al. Detoxification and tolerance of heavy metals in plants. In. Ahmad P, editor. Plant Metal Interaction. Chapter 13. USA: Elsevier Inc; 2016. DOI: 10.1016/B978-0-12-803158-2.00013-8.10.1016/B978-0-12-803158-2.00013-8Open DOISearch in Google Scholar

[6] Galleo SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales MD. Unravelling cadmium toxicity and tolerance in plant: insight into regulatory mechanism. Environ Exp Bot. 2012;83:33-46. DOI: 10.1016/j.envexpbot.2012.04.006.10.1016/j.envexpbot.2012.04.006Open DOISearch in Google Scholar

[7] Eutrópio FJ, Ramos AC, Da Silva Folli-Pereira W, De Aquino Portela N, Dos Santos JB, Da Conceição JM, et al. Heavy metal stress and molecular approaches in plants. In: Ahmad P, editor. Plant Metal Interact. 2016; Chapter 22. USA: Elsevier Inc; 2016. DOI: 10.1016/B978-0-12-803158-2.00022-9.10.1016/B978-0-12-803158-2.00022-9Open DOISearch in Google Scholar

[8] Redjala T, Sterckeman T, Morel JL. Influence of plant cadmium content on root cadmium uptake. Proc Internat Plant Nutrition Colloquium XVI, 2009. https://escholarship.org/uc/item/5xw4q4pm.Search in Google Scholar

[9] Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants. Int J Phytoremediat. 2017;19:133-141. DOI: 10.1080/15226514.2016.1207598.10.1080/15226514.2016.120759827409403Open DOISearch in Google Scholar

[10] Ching KH. Cadmium stress in rice plants: influence of essential elements. Crop Env Bioinformat. 2014;11:113-118.Search in Google Scholar

[11] Gill SS, Khan NA, Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plan Sci. 2012;182:112-120. DOI: 10.1016/j.plantsci.2011.04.018.10.1016/j.plantsci.2011.04.01822118622Open DOISearch in Google Scholar

[12] Lehotai N, Peto A, Bajkal S, Erdei L, Tari I, Kolbert Z. In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol. Plant. 2011;33:2199-2207. DOI 10.1007/s11738-011-0759-z.10.1007/s11738-011-0759-zOpen DOISearch in Google Scholar

[13] Moura DJ, Peres VF, Jacques RA, Saffi J. Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair. In: Gupta DK, Sandalio LM, editors. Metal Toxicity in Plants: Perception, Signaling and Remediation. Berlin Heidelberg: Springer Verlag; 2012. DOI: 10.1007/978-3-642-22081-4.10.1007/978-3-642-22081-4Open DOISearch in Google Scholar

[14] Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;12:909-930. DOI: 10.1016/j.plaphy.2010.08.016.10.1016/j.plaphy.2010.08.016Open DOISearch in Google Scholar

[15] Gagne F. Oxidative stress. In: Biochemical Ecotoxicology. Principles and Methods. First edition, Chapter 6. London: Elsevier Inc; 2014. DOI: 10.1016/C2012-0-07586-2.10.1016/C2012-0-07586-2Open DOISearch in Google Scholar

[16] Zaharieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999;40:273-280.10.1093/oxfordjournals.pcp.a029538Open DOISearch in Google Scholar

[17] Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170-3175. http://www.jbc.org/content/247/10/3170.full.pdf.10.1016/S0021-9258(19)45228-9Search in Google Scholar

[18] Bradford MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. DOI: 10.1016/0003-2697(76)90527-3.10.1016/0003-2697(76)90527-3Open DOISearch in Google Scholar

[19] Lichtenthauer HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-382. DOI: 10.1016/0076-6879(87)48036-1.10.1016/0076-6879(87)48036-1Open DOISearch in Google Scholar

[20] Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. DOI: 10.1016/0003-9861(68)90654-1.10.1016/0003-9861(68)90654-1Open DOISearch in Google Scholar

[21] Ibrahim MM, Bafeel SO. Alteration of gene expression, superoxide anion radical and lipid peroxidation induces by lead toxicity in leaves of Lepidium sativum. J Anim Plant Sci. 2009;4:281-288.Search in Google Scholar

[22] Rajfur M, Krems P, Kłos A, Kozłowski R, Jóźwiak MA, Kříž J, et al. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie Province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.10.1515/eces-2016-0016Open DOISearch in Google Scholar

[23] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.Search in Google Scholar

[24] Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci. 2017;8:1-19. DOI: 10.3389/fpls.2017.01867.10.3389/fpls.2017.01867Open DOISearch in Google Scholar

[25] Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405-410. DOI: 10.1016/S1360-1385(02)02312-9.10.1016/S1360-1385(02)02312-9Open DOISearch in Google Scholar

[26] Cuypers A, Keunen E, Bohler S, Jozefczak M, Opdenakker K, Gielen H, et al. Cadmium and copper stress induce a cellular oxidative challenge leading to damage versus signaling. In: Gupta DK, Sandalio LM, editors. Metal Toxicity in Plants: Perception, Signaling and Remediation. Berlin Heidelberg: Springer; 2012. DOI: 10.1007/978-3-642-22081-4_4.10.1007/978-3-642-22081-4_4Open DOISearch in Google Scholar

[27] Gajewska E, Skłodowska M, Słaba M, Mazur J. Effect of nickel on antioxidative enzyme activities proline and chlorophyll contents in wheat shoots. Biol Plantarum. 2006;50:653-659. DOI: 10.1007/s10535-006-0102-5.10.1007/s10535-006-0102-5Open DOISearch in Google Scholar

[28] Lin A, Zhang X, Chen M, Cao Q. Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci. 2007;19:596-602. http://www.jesc.ac.cn/jesc_en/ch/reader/create_pdf.aspx?file_no=2007190514.10.1016/S1001-0742(07)60099-0Search in Google Scholar

[29] Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma. 2010;239:31-38. DOI: 10.1007/s00709-009-0079-y.10.1007/s00709-009-0079-y19921394Open DOISearch in Google Scholar

[30] Ali B, Deng X, Hu X, Gill RA, Ali S, Wang S, et al. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. J Agr Sci Tech. 2015;17:63-74. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.872.1490&rep=rep1&type=pdf.Search in Google Scholar

[31] Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, et al. Cadmium stress in cotton seedlings: Physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot. 2016;104:61-68. DOI: 10.1016/j.sajb.2015.11.006.10.1016/j.sajb.2015.11.006Open DOISearch in Google Scholar

[32] Blokhina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annal Botany. 2003;91:179-194. DOI: 10.1093/aob/mcf118.10.1093/aob/mcf118424498812509339Open DOISearch in Google Scholar

[33] Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, et al. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem. 2005;43:437-44. DOI: 10.1016/j.plaphy.2005.03.007.10.1016/j.plaphy.2005.03.0071589051915890519Open DOISearch in Google Scholar

[34] Wang Z, Zhang YX, Huang ZB, Huang L. Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil. 2008;310:137-149. DOI: 10.1007/s11104-008-9641-1.10.1007/s11104-008-9641-1Open DOISearch in Google Scholar

[35] Martins LL, Mourato MP, Cardoso AI, Pinto AP, Mota AM, De Lurdes S, et al. Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol Plant. 2011;33:1375-1383. DOI: 10.1007/s11738-010-0671-y.10.1007/s11738-010-0671-yOpen DOISearch in Google Scholar

[36] Kapoor D, Kaur S, Bhardwaj R. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. Biomed Res Int. 2014;726070. DOI: 10.1155/2014/726070.10.1155/2014/726070412357525133178Search in Google Scholar

[37] Markovska Y, Gorinova N, Nedkovska M, Miteva K. Cadmium-induced oxidative damage and antioxidant responses in Brassica juncea plants. Biol Plantarum. 2009;53:151-154.10.1007/s10535-009-0023-1Search in Google Scholar

[38] Lu Y, Li XR, He MZ, Wang ZN, Tan HJ. Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim. Sci Cold Arid Reg. 2010;2:436-444. DOI: 10.3724/SP.J.1226.2010.00436.10.3724/SP.J.1226.2010.00436Open DOISearch in Google Scholar

[39] Harris NS, Taylor GJ. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol. 2013;13:103-119. DOI: 10.1186/1471-2229-13-103.10.1186/1471-2229-13-103372641023856013Open DOISearch in Google Scholar

[40] Macfie SM, Mahrami S, McGarvey BD. Differential accumulation of cadmium in near-isogenic lines of durum wheat: no role for phytochelatins. Physiol Mol Biol Plants. 2016;22:461-472. DOI: 10.1007/s12298-016-0383-x.10.1007/s12298-016-0383-x512004027924119Open DOISearch in Google Scholar

[41] Peško M, Kráľová K, Masarovičová E. Response of Hypericum perforatum plants to supply of cadmium compounds containing different forms of selenium. Ecol Chem Eng S. 2010;17:279-287. http://tchie.uni.opole.pl/ece_s/S17_3/S3_2010.pdfSearch in Google Scholar

[42] Zhuk O, Rombel-Bryzek A. Oddziaływanie kadmu i kwasu salicylowego na aktywność metaboliczną Lepidium sativum L. (Effect of cadmium and salicylic acid on metabolic activity in Lepidium sativum L.) Proc ECOpole. 2016;10:379-388. DOI: 10.2429/proc.2016.10(1)04.Search in Google Scholar

[43] Seth CS, Kumar Chaturvedi P, Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf. 2008;71:76-85. DOI: 10.1016/j.ecoenv.2007.10.030.10.1016/j.ecoenv.2007.10.03018082263Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English