Open Access

Heavy Metal Adsorption by Dewatered Iron-Containing Waste Sludge


Cite

[1] Wan Ngah WS, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents. A review. Bioresour Technol. 2008;99:3935-3948. DOI: 10.1016/j.biortech.2007.06.011.10.1016/j.biortech.2007.06.01117681755Open DOISearch in Google Scholar

[2] Zadavıcıüte S, Baltakys K, Eısınas A. Adsorption kinetic parameters of Fe3+ and Ni2+ ions by gyrolite. Materıals Scı. (Medžıagotyra). 2015;21(1):117-122. DOI: 10.5755/j01.ms.21.1.5735.10.5755/j01.ms.21.1.5735Open DOISearch in Google Scholar

[3] Kamiński K, Kamiński W, Mizerski T. Application of artificial neural networks to the technical condition assessment of water supply systems. Ecol Chem Eng S. 2017;24(1):31-40. DOI: 10.1515/eces-2017-0003.10.1515/eces-2017-0003Open DOISearch in Google Scholar

[4] Blakemore R, Chandler R, Surrey T, Ogilvie D, Walmsley N. Management of Water Treatment Plant Residuals in New Zealand, first ed. Auckland: Water Supply Managers’ Group, New Zealand Water and Wastes Association; 1998; 56.Search in Google Scholar

[5] Zhao YQ, Babatunde AO, Hu YS, Kumar JLG, Zhao XH. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011;46(1):278-283. DOI: 10.1016/j.procbio.2010.08.023.10.1016/j.procbio.2010.08.023Open DOISearch in Google Scholar

[6] Vaebi F, Batebi F. Recovery of iron coagulants from tehran water-treatment-plant sludge for reusing in textile wastewater treatment. Iran J Public Health. 2001;30(3-4):135-138.Search in Google Scholar

[7] Miroslav K. Opportunities for water treatment sludge reuse, J Geosci Eng. 2008;54(1):11-22.Search in Google Scholar

[8] Pereira FR, Nunes AF, Segadaes AM, Labrincha JA. Refractory mortars made of different wastes and natural sub-products. Key Eng Mater. 2004;264-268:1743-1747. DOI: 10.4028/www.scientific.net/KEM.264-268.1743.10.4028/www.scientific.net/KEM.264-268.1743Search in Google Scholar

[9] Siswoyo E, Mihara Y, Tanaka S. Determination of key components and adsorption capacity of a low cost adsorbent based on sludge of drinking water treatment plant to adsorb cadmium ion in water. Appl Clay Sci. 2014;97-98:146-152. DOI: 10.1016/j.clay.2014.05.024.10.1016/j.clay.2014.05.024Open DOISearch in Google Scholar

[10] Cherifi M, Hazourli S, Pontvianne S, Leclerc JP, Lapicque F. Electrokinetic removal of aluminum from water potabilization treatment sludge. Desalination. 2011;281(17):263-270. DOI: 10.1016/j.desal.2011.07.071.10.1016/j.desal.2011.07.071Search in Google Scholar

[11] Hong GX, Hao CG, Chii S. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage. Water Res. 2005;39(15):433-3440. DOI: 10.1016/j.watres.2004.07.033.10.1016/j.watres.2004.07.03316095658Open DOISearch in Google Scholar

[12] Yang L, Wei J, Zhang YM, Wang JL, Wang DT. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater. Appl Surf Sci. 2014;305:337-346. DOI: 10.1016/j.apsusc.2014.03.081.10.1016/j.apsusc.2014.03.081Open DOISearch in Google Scholar

[13] Krishna KCB, Aryal A, Jansen T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J Environ Manage. 2016;180:17-23. DOI: 10.1016/j.jenvman.2016.05.006.10.1016/j.jenvman.2016.05.00627192387Open DOISearch in Google Scholar

[14] Hasan H, Abdullah SRS, Kofli NT, Kamarudin SK. Isotherm equilibria of Mn2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge. J Environ Manage. 2012;30:34-43. DOI: 10.1016/j.jenvman.2012.06.027.10.1016/j.jenvman.2012.06.02722813857Open DOISearch in Google Scholar

[15] Vinitnantharat S, Kositchaiyong S, Chiarakorn S. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge. Appl Surf Sci. 2010;256(17-15):5458-5462. DOI: 10.1016/j.apsusc.2009.12.140.10.1016/j.apsusc.2009.12.140Open DOISearch in Google Scholar

[16] Gibbons MK, Gagnon GA. Adsorption of arsenic from a Nova Scotia ground-water onto water treatment residual solids. Water Res. 2010;44:5740-5749. DOI: 10.1016/j.watres.2010.06.050.10.1016/j.watres.2010.06.05020663534Open DOISearch in Google Scholar

[17] Kim YS, Kim DH, Yang JS, Baek K. Adsorption characteristics of As(III) and As(V) on alum sludge from water purification facilities. Sep Sci Technol. 2012;47:2211-2217. DOI: 10.1080/01496395.2012.700676.10.1080/01496395.2012.700676Open DOISearch in Google Scholar

[18] Irawan C, Liu JC, Wu CC. Removal of boron using aluminum-based water treatment residuals (Al-WTRs). Desalination. 2011;276:322-327. DOI: 10.1016/j.desal.2011.03.070.10.1016/j.desal.2011.03.070Open DOISearch in Google Scholar

[19] Yang L, Wei J, Liu Z, Wang J, Wang D. Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater. Appl Surf Sci. 2015;330:228-236. DOI: 10.1016/j.apsusc.2015.01.017.10.1016/j.apsusc.2015.01.017Open DOISearch in Google Scholar

[20] Zhou YF, Haynes RJ. Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Pollut. 2011;215:631-643. DOI: 10.1007/s11270-010-0505-y.10.1007/s11270-010-0505-yOpen DOISearch in Google Scholar

[21] Lai JY, Liu JC. Co-conditioning and dewatering of alum sludge and waste activated sludge. Water Sci Technol. 2004;50(9):41-48.10.2166/wst.2004.0530Open DOISearch in Google Scholar

[22] Hegazy BE, Fouad HA, Hassanain AM. Incorporation of water sludge, silica fume, and rice husk ash in brick making. Adv Environ Res. 2012;1(1):83-96. DOI: 10.1.1.665.8293.10.12989/aer.2012.1.1.083Search in Google Scholar

[23] Kizinievic O, Zurauskiene R, Kizinievic V, Zurauskas R. Utilisation of sludge waste from water treatment for ceramic products. Constr Build Mater. 2013;41:464-473. DOI: 10.1016/j.conbuildmat.2012.12.041.10.1016/j.conbuildmat.2012.12.041Open DOISearch in Google Scholar

[24] Dayton EA, Basta NT. Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ Res. 2001;73(1):52-57. DOI: 10.2175/106143001X138688.10.2175/106143001X138688Open DOISearch in Google Scholar

[25] Rigby H, Pritchard D, Collins D, Walton K, Penney N. The use of alum sludge to improve cereal production on a nutrient-deficient soil. Environ Technol. 2013;34:1359-1368. DOI: 10.1080/09593330.2012.747037.10.1080/09593330.2012.74703724191468Open DOISearch in Google Scholar

[26] Husillos Rodrguez N, Martnez-Ramrez S, Blanco-Varela MT, Guillem M, Puig J, Larrotcha E, et al. Evaluation of spray-dried sludge from drinking water treatment plants as a prime material for clinker manufacture. Cem Concr Compos. 2011;33:267-275. DOI: 10.1016/j.cemconcomp.2010.10.020.10.1016/j.cemconcomp.2010.10.020Open DOISearch in Google Scholar

[27] Kayranlı B. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study. Chem Eng J. 2011;173:782-791. DOI: doi.org/10.1016/j.cej.2011.08.051.10.1016/j.cej.2011.08.051Open DOISearch in Google Scholar

[28] Macek-Kamińska K, Stemplewski S. Application of neural networks in diagnostics of chemical compounds based on their infrared spectra. Ecol Chem Eng S. 2017;24(1):107-118. DOI: 10.1515/eces-2017-0008.10.1515/eces-2017-0008Open DOISearch in Google Scholar

[29] Chen B, Zhou D, Zhu L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol. 2008;42(14):5137-5143. DOI: 10.1021/es8002684.10.1021/es800268418754360Open DOISearch in Google Scholar

[30] Ardejani FD, Badii K, Yousefi Limaee N, Shafaei SZ, Mirhabibi AR. Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: Effect of pH, initial concentration and shell type. J Hazard Mater. 2008;151:730-737. DOI: 10.1016/j.jhazmat.2007.06.048.10.1016/j.jhazmat.2007.06.04817656016Open DOISearch in Google Scholar

[31] Agrawal A, Sahu KK, Pandey BD. Removal of zinc from aqueous solutions using sea nodule residue. Colloids Surf A: Phys Eng Aspects. 2004;237(1-3):133-140. DOI: 10.1016/j.colsurfa.2004.01.034.10.1016/j.colsurfa.2004.01.034Open DOISearch in Google Scholar

[32] Yıldız S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007Open DOISearch in Google Scholar

[33] Yıldız S. Artificial Neural Network (ANN) methods for modeling of Zn(II) adsorption in batch process. Korean J Chem Eng. 2017;34(9):2423-2434. DOI: 10.1007/s11814-017-0157-3.10.1007/s11814-017-0157-3Open DOISearch in Google Scholar

[34] Munagapati VS, Kim DS. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Eco Environ Saf. 2017;141:226-234. DOI: 10.1016/j.ecoenv.2017.03.036.10.1016/j.ecoenv.2017.03.03628349874Open DOISearch in Google Scholar

[35] Anitha T, Senthil Kumar P, Sathish Kumar K, Sriram K, Feroze Ahmed J. Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): adsorption isotherms, kinetics and equilibrium studies. Desalin Water Treat. 2016;57:13711-13721. DOI: 10.1080/19443994.2015.1061951.10.1080/19443994.2015.1061951Open DOISearch in Google Scholar

[36] Gautama SB, Vaishyab RC, Devnania GL, Mathurc AK. Adsorption of As(III) from aqueous solutions by iron-impregnated quartz, lignite, and silica sand: kinetic study and equilibrium isotherm analysis. Desalin Water Treat. 2014;52:3178-3190. DOI: 10.1080/19443994.2013.797182.10.1080/19443994.2013.797182Open DOISearch in Google Scholar

[37] Yang S, Li J, Lu Y, Chen Y, Wang X. Sorption of Ni(II) on GMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature. Appl Radiat Isot. 2009;67:1600-1608. DOI: 10.1016/j.apradiso.2009.03.11810.1016/j.apradiso.2009.03.11819427793Open DOISearch in Google Scholar

[38] Liu ZR, Zhou SQ. Adsorption of copper and nickel on Na-bentonite. Process Saf Environ Prot. 2010;88:62-66.10.1016/j.psep.2009.09.001Open DOISearch in Google Scholar

[39] Song X, Wang S, Chen L, Zhang M, Dong Y. Effect of pH, ionic strength and temperature on the sorption of radionickel on Na-montmorillonite. Appl Radiat Isot. 2009;67:1007-1012. DOI: 10.1016/j.apradiso.2009.02.085.10.1016/j.apradiso.2009.02.08519328707Open DOISearch in Google Scholar

[40] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.10.1016/j.clay.2007.04.002Open DOISearch in Google Scholar

[41] Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.10.1016/j.jhazmat.2009.12.04020042281Open DOISearch in Google Scholar

[42] Paul ML, Samuel J, Chandrasekaran N, Mukherjee A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J. 2012;187:104-113. DOI: 10.1016/j.cej.2012.01.106.10.1016/j.cej.2012.01.106Open DOISearch in Google Scholar

[43] Rafati L, Ehrampoush MH, Rafati AA, Mokhtari M, Mahvi AH. Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. J Molecular Liquids. 2016;224:832-841. DOI: 10.1016/j.molliq.2016.10.059.10.1016/j.molliq.2016.10.059Open DOISearch in Google Scholar

[44] Daneshvar E, Kousha M, Sohrabi MS, Khataee A, Converti A. Biosorption of three acid dyes by the brown macroalga Stoechospermum marginatum: Isotherm, kinetic and thermodynamic studies. Chem Eng J. 2012;195-196:297-306. DOI: 10.1016/j.cej.2012.04.074.10.1016/j.cej.2012.04.074Open DOISearch in Google Scholar

[45] Saini AS, Melo JS. Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresour Technol. 2013;149:155-162. DOI: 10.1016/j.biortech.2013.09.034.10.1016/j.biortech.2013.09.034Open DOISearch in Google Scholar

[46] Zhiwei N, Qiaohui F, Wenhua W, Junzheng X, Lei C, Wangsuo W. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite. Appl Radiat Isot. 2009;67: 1582-1590. DOI: 10.1016/j.apradiso.2009.03.113.10.1016/j.apradiso.2009.03.113Open DOISearch in Google Scholar

[47] Argun ME, Dursun Ş, Özdemir C, Karataş M. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J Hazard Mater. 2007;141(1):77-85. DOI: 10.1016/j.jhazmat.2006.06.09510.1016/j.jhazmat.2006.06.095Open DOISearch in Google Scholar

[48] Lagergren S. About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Handl. 1898:24, 16.Search in Google Scholar

[49] Ho YS, McKay G. Pseudo-second-order model for sorption processes. Process Biochem. 1999;34:451-465. DOI: 10.1016/S0032-9592(98)00112-5.10.1016/S0032-9592(98)00112-5Open DOISearch in Google Scholar

[50] Ilyas M, Khan N, Sultana Q. Thermodynamic and kinetic studies of chromium(VI) adsorption by sawdust activated carbon. J Chem Soc Pak. 2014;36(6):1003-1012.Search in Google Scholar

[51] Namasivayam C, Kavitha D. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon. J Hazard Mater. 2003;98:257-274. DOI: 10.1016/S0304-3894(03)00006-2.1262879210.1016/S0304-3894(03)00006-2Search in Google Scholar

[52] Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, et al. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of reactive red 120 dye from aqueous effluents. J Hazard Mater. 2012;241-242:146-153. DOI: 10.1016/j.jhazmat.2012.09.026.10.1016/j.jhazmat.2012.09.02623040660Search in Google Scholar

[53] Namasivayam C, Sureshkumar MV. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour Technol. 2008;99(7):2218-2225. DOI: 10.1016/j.biortech.2007.05.023.10.1016/j.biortech.2007.05.02317601729Open DOISearch in Google Scholar

[54] Ijagbemi CO, Baek MH, Kim DS. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater. 2010;174:746-755. DOI: 10.1016/j.jhazmat.2009.09.115.10.1016/j.jhazmat.2009.09.11519833431Open DOISearch in Google Scholar

[55] Katsou E, Malamis S, Haralambous KJ, Loizidou M. Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater. J Membr Sci. 2010;360:234-249. DOI: 10.1016/j.memsci.2010.05.020.10.1016/j.memsci.2010.05.020Open DOISearch in Google Scholar

[56] Zou W, Han R, Chen Z. Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids Surf. A: Physicochem Eng Asp. 2006;279:238-246. DOI: 10.1016/j.colsurfa.2006.01.008.10.1016/j.colsurfa.2006.01.008Open DOISearch in Google Scholar

[57] Vieira MGA, Almeida Neto AF, Gimenes ML, da Silva MGC. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay. J Hazard Mater. 2010;177:362-371. DOI: 10.1016/j.jhazmat.2009.12.040.10.1016/j.jhazmat.2009.12.040Open DOISearch in Google Scholar

[58] Wierzba S, Rajfur M, Nabrdalik M, Klos A. The application of electroanalytical methods to determine affinity series of metal cations for functional biosorbent groups. J Elect Chem. 2018;809:8-13. DOI: 10.1016/j.jelechem.2017.12.037.10.1016/j.jelechem.2017.12.037Open DOISearch in Google Scholar

[59] Keane MA. The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers. Colloids Surf. A: Physicochem Eng Asp. 1998;138:11-20. DOI: 10.1016/S0927-7757(97)00078-2.10.1016/S0927-7757(97)00078-2Open DOISearch in Google Scholar

[60] Inglezakis VJ, Zorpas AA, Loizidou MD, Grigoropoulou HP. The effect of competitive cations and anions on ion exchange of heavy metals. Sep Purif Technol. 2005;46:202-207. DOI: 10.1016/j.seppur.2005.05.008.10.1016/j.seppur.2005.05.008Open DOISearch in Google Scholar

[61] Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227-236. DOI: 10.1016/j.clay.2007.04.002.10.1016/j.clay.2007.04.002Open DOISearch in Google Scholar

[62] Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186(1):458-465. DOI: 10.1016/j.jhazmat.2010.11.029.10.1016/j.jhazmat.2010.11.02921130566Open DOISearch in Google Scholar

[63] Mckay G, Blair HS, Gardner JR. Adsorption of dyes on chitin. I. Equilibrium studies. J App Polymer Sci. 1982;27(8):3043-3057. DOI: 10.1002/app.1982.070270827.10.1002/app.1982.070270827Search in Google Scholar

[64] Abd El-Latif M, Elkady M. Equilibrium isotherms for harmful ions sorption using nano zirconium vanadate ion exchanger. Desalination. 2010;255:21-43. DOI: 10.1016/j.desal.2010.01.020.10.1016/j.desal.2010.01.020Open DOISearch in Google Scholar

[65] Yang CH. Statistical mechanical study on the Freundlich isotherm equation. J Colloid Inter Sci. 1998;208:379-387. DOI: 10.1006/jcis.1998.5843.10.1006/jcis.1998.58439845681Open DOISearch in Google Scholar

[66] Ali RM, Hamad HA, Hussein MM, Malash GH. Potential of using green adsorbent of heavy metal removal fromaqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol Eng. 2016;91:317-332. DOI: 10.1016/j.ecoleng.2016.03.015.10.1016/j.ecoleng.2016.03.015Open DOISearch in Google Scholar

[67] Ostroski IC, Barros MASD, Silva EA, Dantas JH, Arroyo PA, Lima OCMA. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. J Hazard Mater. 2009;161:1404-1412. DOI: 10.1016/j.jhazmat.2008.04.111.10.1016/j.jhazmat.2008.04.111Open DOISearch in Google Scholar

[68] Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Inter Sci. 2006;304:21-28. DOI: 10.1016/j.jcis.2006.07.068.10.1016/j.jcis.2006.07.068Open DOISearch in Google Scholar

[69] Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;61:229-242. DOI: 10.1016/j.seppur.2007.10.002.10.1016/j.seppur.2007.10.002Open DOISearch in Google Scholar

[70] Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution. App Radiat Isot. 1996;47:467-471. DOI: 10.1016/0969-8043(95)00310-X.10.1016/0969-8043(95)00310-XOpen DOISearch in Google Scholar

[71] Onyang MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H. Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Inter Sci. 2004;279:341-350. DOI: 10.1016/j.jcis.2004.06.038.10.1016/j.jcis.2004.06.03815464797Open DOISearch in Google Scholar

[72] Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J Hazard Mater. 2009;162:616-645. DOI: 10.1016/j.jhazmat.2008.06.042.10.1016/j.jhazmat.2008.06.04218656309Open DOISearch in Google Scholar

[73] Winzor DJ, Jackson CM. Interpretation of the temperature dependence of equilibrium and rate constants. J Molec Recog. 2006;19(5):389-407. DOI: 10.1002/jmr.799.10.1002/jmr.79916897812Open DOISearch in Google Scholar

[74] Anastasia V, Penkova SFA, Acquah MP, Sokolova ME, Dmitrenko AMT. Polyvinyl alcohol membranes modified by low-hydroxylated fullerenol C60(OH)12. J Membrane Sci. 2015;491:22-27. DOI: 10.1016/j.memsci.2015.05.011.10.1016/j.memsci.2015.05.011Open DOISearch in Google Scholar

[75] Ai T, Jiang XJ, Yu HM, Xu HB, Pan DW, Liu QY. Equilibrium, kinetic and mechanism studies on the biosorption of Cu2+ and Ni2+ by sulfur-modified bamboo powder. Korean J Chem Eng. 2015;32:342-349.10.1007/s11814-014-0227-8Search in Google Scholar

[76] Gupta SS, Bhattacharyya KG. Adsorption of Ni(II) on clays. J Colloid Inter Sci. 2006;295:21-32. DOI: 10.1016/j.jcis.2005.07.073.10.1016/j.jcis.2005.07.07316125186Open DOISearch in Google Scholar

[77] Moreno-Piraján JC, Garcia-Cuello VS, Giraldo L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption. 2011;17:505-514. DOI: 10.1007/s10450-010-9311-5.10.1007/s10450-010-9311-5Open DOISearch in Google Scholar

[78] Osman HE, Badwy RK, Ahmad HF. Usage of some agricultural by-products in the removal of some heavy metals from industrial wastewater. J Phytol. 2010;2:51-62.Search in Google Scholar

[79] Rozaini CA, Jain K, Oo CW, Tan KW, Tan LS, Azraa A, et al. Optimization of nickel and copper ions removal by modified mangrove barks. Int J Chem Eng Appl. 2010;1(1):84-89.10.7763/IJCEA.2010.V1.14Search in Google Scholar

[80] Tabaraki R, Nateghi A. Multimetal adsorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium. Ecol Eng. 2014;71:197-205. DOI: 10.1016/j.ecoleng.2014.07.031.10.1016/j.ecoleng.2014.07.031Open DOISearch in Google Scholar

[81] Álvarez-Ayuso E, García-Sánchez A, Querol X. Purification of metal electroplating waste waters using zeolites. Water Res. 2003;37:4855-4862. DOI: 10.1016/j.watres.2003.08.009.10.1016/j.watres.2003.08.00914604631Open DOISearch in Google Scholar

[82] Bhattacharyya KG, Gupta SS. Uptake of Ni(II) ions from aqueous solution by kaolinite and montmorillonite: influence of acid activation of the clays. Sep Sci Technol. 2008;43:3221-3250. DOI: 10.1080/01496390802219638.10.1080/01496390802219638Open DOISearch in Google Scholar

[83] Bhattacharyya KG, Gupta SS. Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study. Chem Eng J. 2008;136:1-13. DOI: 10.1016/j.cej.2007.03.005.10.1016/j.cej.2007.03.005Open DOISearch in Google Scholar

[84] Blais JF, Shen S, Meunier N, Tyagi R.D. Comparison of natural adsorbents for metal removal from acidic effluent. Environ Technol. 2003;24:205-215. DOI: 10.1080/09593330309385552.10.1080/095933303093855521266679012666790Open DOISearch in Google Scholar

[85] Hui KS, Chao CYH, Kot SC. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater. 2005;127:89-101. DOI: 10.1016/j.jhazmat.2005.06.027.10.1016/j.jhazmat.2005.06.02716076523Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English