Open Access

Determination of Sorption Properties of Heavy Metals in Various Biosorbents

   | Jul 17, 2018

Cite

[1] Bayramoglu G, Akbulut A, Acıkgoz-Erkaya I, Arica MY. J Appl Phycol. 2017;1-13. DOI: 10.1007/s10811-017-1238-8.10.1007/s10811-017-1238-8Open DOISearch in Google Scholar

[2] Cheng J, Yin W, Chang Z, Lundholm N, Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J Appl Phycol. 2017;29:211-221. DOI: 10.1007/s10811-016-0916-2.10.1007/s10811-016-0916-2Open DOISearch in Google Scholar

[3] Herrero R, Lodeiro P, Rey-Castro C, Vilariño T, Sastre de Vicente ME. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005;39:3199-3210. DOI: 10.1016/j.watres.2005.05.041.10.1016/j.watres.2005.05.041Open DOISearch in Google Scholar

[4] Hauck M, Huneck S. Lichen substances affect metal adsorption in Hypogymnia physodes. J Chem Ecol. 2007;33:219-223. DOI: 10.1007/s10886-006-9225-6.10.1007/s10886-006-9225-6Open DOISearch in Google Scholar

[5] Balarama Krishna MV, Chandrasekaran K, Rao SV, Karunasagar D, Arunachalam J. Speciation of Cr(III) and Cr(VI) in waters using immobilized moss and determination by ICP-MS and FAAS. Talanta. 2005;65:135-143. DOI: 10.1016/j.talanta.2004.05.051.10.1016/j.talanta.2004.05.051Open DOISearch in Google Scholar

[6] Ferreira D, Ciffroy P, Tusseau-Vuillemin M-H, Garnier C, Garnier J-M. Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: Influence of water cationic composition (Ca, Mg, Na and pH). Chemosphere. 2009;74:1117-1124. DOI: 10.1016/j.chemosphere.2008.10.031.10.1016/j.chemosphere.2008.10.031Open DOISearch in Google Scholar

[7] Bhat SV, Melo JS, Chaugule BB, D’Souza SF. Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga. J Hazard Mater. 2008;158:628-635. DOI: 10.1016/j.jhazmat.2008.02.042.10.1016/j.jhazmat.2008.02.042Open DOISearch in Google Scholar

[8] Srivastava S, Agrawal SB, Mondal MK. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res. 2015;22:15386-15415. DOI: 10.1007/s11356-015-5278-9.10.1007/s11356-015-5278-9Open DOISearch in Google Scholar

[9] Ringqvist L, Holmgren A, Oborn I. Poorly humified peat as an adsorbent for metals in wastewater. Water Res. 2002;36:2394-2404. DOI: 10.1016/S0043-1354(01)00430-4.10.1016/S0043-1354(01)00430-4Open DOISearch in Google Scholar

[10] Jain CK, Malik DS, Yadav AK. Applicability of plant based biosorbents in the removal of heavy metals: a review. Environ Process. 2016;3:495-523. DOI: 10.1007/s40710-016-0143-5.10.1007/s40710-016-0143-5Search in Google Scholar

[11] Ramrakhiani L, Ghosh S, Majumdar S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review. Appl Biochem Biotechnol. 2016;180:41-78. DOI: 10.1007/s12010-016-2083-y.10.1007/s12010-016-2083-yOpen DOISearch in Google Scholar

[12] Genc-Fuhrman H, Mikkelsen PS, Ledin A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents. Water Res. 2007;41:591-602. DOI: 10.1016/j.watres.2006.10.024.10.1016/j.watres.2006.10.024Open DOISearch in Google Scholar

[13] Wu P, Zhou Y. Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: A porous iron sorbent and its mixtures with zeolite and crystal gravel. J Hazard Mater. 2009;168:674-680. DOI: 10.1016/j.jhazmat.2009.02.093.10.1016/j.jhazmat.2009.02.093Open DOISearch in Google Scholar

[14] Kłos A, Rajfur M, Wacławek M, Wacławek W. Determination of the atmospheric precipitation pH value on the basis of the analysis of lichen cationactive layer constitution. Electrochim Acta. 2006;51:5053-5061. DOI: 10.1016/j.electacta.2006.03.039.10.1016/j.electacta.2006.03.039Open DOISearch in Google Scholar

[15] Martins RJE, Pardo R, Boaventura RAR. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness. Water Res. 2004;38:693-699. DOI: 10.1016/j.watres.2003.10.013.10.1016/j.watres.2003.10.013Open DOISearch in Google Scholar

[16] Sen Gupta B, Curran M, Shameem H, Ghosh TK. Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manage. 2009;90:954-960. DOI: 10.1016/j.jenvman.2008.02.012.10.1016/j.jenvman.2008.02.012Open DOISearch in Google Scholar

[17] Ho YS, John Wase DA, Forster CF. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res. 1995;29:1327-1332. DOI: 10.1016/0043-1354(94)00236-Z.10.1016/0043-1354(94)00236-ZOpen DOISearch in Google Scholar

[18] Li Z-Y, Guo S-Y, Li L. Study on the process, thermodynamical isotherm and mechanism of Cr(III) uptake by Spirulina platensis. J Food Eng. 2006;75:129-136. DOI: 10.1016/j.jfoodeng.2005.04.003.10.1016/j.jfoodeng.2005.04.003Open DOISearch in Google Scholar

[19] Saeed A, Iqbal M. Bioremoval of cadmium from aqueous solution by blackgram husk (Cicer arientinum). Water Res. 2003;37:3472-3480. DOI: 10.1016/S0043-1354(03)00175-1.10.1016/S0043-1354(03)00175-1Open DOISearch in Google Scholar

[20] Pipíška M, Horník M, Vortoch L, Augustín J, Lesný J. Biosorption of Co2+ ions by lichen Hypogymnia physodes from aqueous solutions. Biologia. 2007;62:276-282. DOI: 10.2478/s11756-007-0047-y.10.2478/s11756-007-0047-yOpen DOISearch in Google Scholar

[21] Uluozlu OD, Sari A, Tuzen M, Soylak M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour Technol. 2008;99:2972-2980. DOI: 10.1016/j.biortech.2007.06.052.10.1016/j.biortech.2007.06.05217714944Open DOISearch in Google Scholar

[22] Chen Z, Ma W, Han M. Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models. J Hazard Mater. 2008;155:327-333. DOI: 10.1016/j.jhazmat.2007.11.064.10.1016/j.jhazmat.2007.11.06418178002Open DOISearch in Google Scholar

[23] Dhananjay Kumar, Pandey LK, Gaur JP. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems. Colloids Surf B Biointer. 2010;81:476-485. DOI: 10.1016/j.colsurfb.2010.07.042.10.1016/j.colsurfb.2010.07.04220724120Open DOISearch in Google Scholar

[24] Gupta VK, Rastogi A, Saini VK, Jain N. Biosorption of copper(II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci. 2006;296:59-63. DOI: 10.1016/j.jcis.2005.08.033.10.1016/j.jcis.2005.08.03316168429Open DOISearch in Google Scholar

[25] Romera E, Gonzàlez F, Ballester A, Blázquez ML, Muñoz JA. Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol. 2007;98:3344-3353. DOI: 10.1016/j.biortech.2006.09.026.10.1016/j.biortech.2006.09.02617624771Open DOISearch in Google Scholar

[26] Sari A, Tuzen M. Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic studies. J Hazard Mater. 2009;171:500-507. DOI: 10.1016/j.jhazmat.2009.06.023.10.1016/j.jhazmat.2009.06.02319576694Open DOISearch in Google Scholar

[27] Khan TA, Mukhlif AA, Khan EA, Sharma DK. Isotherm and kinetics modeling of Pb(II) and Cd(II) adsorptive uptake from aqueous solution by chemically modified green algal biomass. Model Earth Syst Environ. 2016;2:117. DOI: 10.1007/s40808-016-0157-z.10.1007/s40808-016-0157-zOpen DOISearch in Google Scholar

[28] Witek-Krowiak A, Mitek M, Pokomeda K, Szafran RG, Modelski S. Biosorption of cationic dyes by beech sawdust I. Kinetics and equilibrium modeling. Chem Process Eng. 2010;31:409-420. ISSN: 0208-6425.Search in Google Scholar

[29] Aksu Z, İşoğlu İA. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 2005;40:3031-3044. DOI: 10.1016/j.procbio.2005.02.004.10.1016/j.procbio.2005.02.004Open DOISearch in Google Scholar

[30] Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chem Eng J. 2008;144:1-9. DOI: 10.1016/j.cej.2007.12.020.10.1016/j.cej.2007.12.020Open DOISearch in Google Scholar

[31] Kłos A. Mchy w biomonitoringu środowiska (Mosses in Environmental Biomonitoring). Warszawa: WN PWN; 2017. ISBN: 9788301194345.Search in Google Scholar

[32] Ribeiro RFL, Magalhães SMS, Barbosa FAR, Nascentes CC, Campos LC, Moraes DC. Evaluation of the potential of microalgae Microcystis novacekii in the removal of Pb2+ from an aqueous medium. J Hazard Mater. 2010;179:947-953. DOI: 10.1016/j.jhazmat.2010.03.097.10.1016/j.jhazmat.2010.03.09720456862Open DOISearch in Google Scholar

[33] Kłos A, Rajfur M, Wacławek M, Wacławek W. Heavy metal sorption in the lichen cationactive layer. Bioelectrochemistry. 2007;71:60-65. DOI: 10.1016/j.bioelechem.2006.12.005.10.1016/j.bioelechem.2006.12.005Open DOISearch in Google Scholar

[34] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.007Open DOISearch in Google Scholar

[35] Nuhoglu Y, Malkoc E, Gürses A, Canpolat N. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresour Technol. 2002;85:331-333. DOI: 10.1016/S0960-8524(02)00098-6.10.1016/S0960-8524(02)00098-6Open DOISearch in Google Scholar

[36] Garty J, Weissman L, Cohen L, Karnieli A, Orlovsky L. Transplanted Lichens in and around the Mount Carmel National Park and the Haifa Bay Industrial Region in Israel: Physiological and Chemical Responses. Environ Res. 2001;85:159-176. DOI: 10.1006/enrs.2000.4222.10.1006/enrs.2000.4222Open DOISearch in Google Scholar

[37] Mehta SK, Gaur JP. Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng. 2001;18:1-13. DOI: 10.1016/S0925-8574(00)00174-9.10.1016/S0925-8574(00)00174-9Open DOISearch in Google Scholar

[38] Tuzen M, Sari A, Mendil D, Soylak M. Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies. J Hazard Mater. 2009;169:263-270. DOI: 10.1016/j.jhazmat.2009.03.096.10.1016/j.jhazmat.2009.03.09619380200Open DOISearch in Google Scholar

[39] Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies. J Hazard Mater. 2009;162:874-879. DOI: 10.1016/j.jhazmat.2008.05.112.10.1016/j.jhazmat.2008.05.11218599209Open DOISearch in Google Scholar

[40] Ajjabi LCh, Chouba L. Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manage. 2009;90:3485-3489. DOI: 10.1016/j.jenvman.2009.06.001.10.1016/j.jenvman.2009.06.00119576679Open DOISearch in Google Scholar

[41] Singh A, Kumar D, Gaur JP. Removal of Cu(II) and Pb(II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass. J Hazard Mater. 2008;152:1011-1019. DOI: 10.1016/j.jhazmat.2007.07.076.10.1016/j.jhazmat.2007.07.07617825986Open DOISearch in Google Scholar

[42] Kuśmierek K, Świątkowski A. Influence of pH on adsorption kinetics of monochlorophenols from aqueous solutions on granular activated carbon. Ecol Chem Eng. 2015;22:95-105. DOI: 10.1515/eces-2015-0006.10.1515/eces-2015-0006Open DOISearch in Google Scholar

[43] Boustie J, Grube M. Lichens, a promising source of bioactive secondary metabolites. Plant Gen Res. 2005;3:273-287. DOI: 10.1079/PGR200572.10.1079/PGR200572Open DOISearch in Google Scholar

[44] Kłos A, Rajfur M, Wacławek M, Wacławek W. Ion equilibrium in lichen surrounding. Bioelectrochemistry. 2005;66:95-103. DOI: 10.1016/j.bioelechem.2004.04.006.10.1016/j.bioelechem.2004.04.006Open DOISearch in Google Scholar

[45] Sharma SK, Mahiya S, Lofrano G. Removal of divalent nickel from aqueous solutions using Carissa carandas and Syzygium aromaticum: isothermal studies and kinetic modelling. Appl Water Sci. 2017;7:1855-1868. DOI: 10.1007/s13201-015-0359-y.10.1007/s13201-015-0359-yOpen DOISearch in Google Scholar

[46] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70:115-124. DOI: 10.1016/S0923-0467(98)00076-1.10.1016/S0923-0467(98)00076-1Open DOISearch in Google Scholar

[47] Ho YS. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics. 2004;59:171-177. DOI: 10.1023/B:SCIE.0000013305.99473.10.1023/B:SCIE.0000013305.99473Open DOISearch in Google Scholar

[48] Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136:681-689. DOI: 10.1016/j.jhazmat.2005.12.043.10.1016/j.jhazmat.2005.12.04316460877Open DOISearch in Google Scholar

[49] Grimm A, Zanzi R, Björnbom E, Cukierman AL. Comparison of different types of biomasses for copper biosorption. Bioresour Technol. 2008;99:2559-2565. DOI: 10.1016/j.biortech.2007.04.036.10.1016/j.biortech.2007.04.03617570656Open DOISearch in Google Scholar

[50] Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU. Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresour Technol. 2010;101:1466-1470. DOI: 10.1016/j.biortech.2009.08.008.10.1016/j.biortech.2009.08.00819713104Open DOISearch in Google Scholar

[51] Özer A, Özer D, Ekiz HI. The equilibrium and kinetic modeling of the biosorption of copper(II) ions on Cladophora crispate. Adsorption. 2004;10:317-326. DOI: 10.1007/s10450-005-4817-y.10.1007/s10450-005-4817-ySearch in Google Scholar

[52] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus Dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.10.1515/eces-2017-0007Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English