Cite

[1] Pasternak T, Potters G, Caubergs R, Jansen MAK, Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ and cellular level. J Exp Bot. 2005;56:1991-2001. DOI: 10.1093/jxb/eri196.10.1093/jxb/eri196Open DOISearch in Google Scholar

[2] Raldugina GN, Krasavina MS, Lunkova NF, Burmistrova NA. Resistance of plants to Cu stress: transgenesis. In: Ahmad P, editor. Plant Metal Interaction. Emerging Remediation Techniques. Elsevier. 2016:69-114. DOI: 10.1016/B978-0-12-803158-2.00004-7.10.1016/B978-0-12-803158-2.00004-7Open DOISearch in Google Scholar

[3] Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995;18:321-336. DOI: 10.1016/0891-5849(94)00159-H.10.1016/0891-5849(94)00159-Open DOISearch in Google Scholar

[4] Doğanlar ZB, Metal accumulation and physiological responses induced by copper and cadmium in Lemna gibba, L. minor and Spirodela polyrhiza. Chem Speciat Bioavialabil. 2013;15:79-88. DOI: 10.3184/095422913X13706128469701.10.3184/095422913X13706128469701Open DOISearch in Google Scholar

[5] Indumathy R, Aruna A. Free radical scavenging activities, total phenolic and flavonoid content of Lepidium sativum (Linn.). Int J Pharm Pharm Sci. 2013;5:634-637. https://www.researchgate.net/publication/288293438_Free_radical_scavenging_activities_total_phenolic_and_flavonoid_content_of_Lepidium_sativum_Linn.Search in Google Scholar

[6] Zia-Ul-Haq M, Ahmad S, Calani L, Mazzeo T, Del Rio D, Pellegrini N, et al. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules. 2012;17:10306-10321. DOI: 10.3390/molecules170910306.10.3390/170910306Open DOISearch in Google Scholar

[7] Zaharieva T, Yamashita K, Matsumoto H. Iron deficiency induced changes in ascorbate contetnt and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999;40:273-280.10.1093/oxfordjournals.pcp.a029538Open DOISearch in Google Scholar

[8] Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275. http://www.jbc.org/content/193/1/265.long.10.1016/S0021-9258(19)52451-6Search in Google Scholar

[9] Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189-198. DOI: 10.1016/0003-9861(68)90654-1.10.1016/0003-9861(68)90654-1Open DOISearch in Google Scholar

[10] Ibrahim MM, Bafeel SO. Alteration of gene expression, superoxide anion radical and lipid peroxidation induces by lead toxicity in leaves of Lepidium sativum. J Anim Plant Sci. 2009;4:281-288. http://www.m.elewa.org/JAPS/2009/4.1/6.pdf.Search in Google Scholar

[11] Rajfur M, Krems P, Kłos A, Kozłowski R, Jóźwiak MA, Kříž J, et al. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie Province. Ecol Chem Eng S. 2016;23(2):237-247. DOI: 10.1515/eces-2016-0016.10.1515/eces-2016-0016Open DOISearch in Google Scholar

[12] iCE 3000 Series AA Spectrometers Operators Manuals. Cambridge: Thermo Fisher Scientific; 2011. http://photos.labwrench.com/equipmentManuals/9291-6306.pdf.Search in Google Scholar

[13] Lu Y, Li XR, He MZ, Wang ZN, Tan HJ. Nickel effects on growth and antioxidative enzymes activities in desert plant Zygophyllum xanthoxylon (Bunge) Maxim. Sci Cold Arid Regions. 2010;2:436-444. DOI: 10.3724/SP.J.1226.2010.00436.10.3724/SP.J.1226.2010.00436Open DOISearch in Google Scholar

[14] Keser G. Effects of irrigation with wastewater on the physiological properties and heavy metal content in Lepidium sativum L. and Eruca sativa (Mill.). Environ Monit Assess. 2013;185:6209-6217. DOI: 10.1007/s10661-012-3018-x.10.1007/s10661-012-3018-x23269485Open DOISearch in Google Scholar

[15] Upadhyay RK, Panda SK. Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown warer lettuce (Pistia stratiotes L.). Comptes Rendus Biol. 2009;332:623-632. DOI: 10.1016/j.crvi.2009.03.001.10.1016/j.crvi.2009.03.00119523602Open DOISearch in Google Scholar

[16] Kanoun-Boulé M, Vicente JAF, Nabais C, Prasad MNV, Freitas H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol. 2009;91:1-9. DOI: 10.1016/j.aquatox.2008.09.009.10.1016/j.aquatox.2008.09.00919027182Open DOISearch in Google Scholar

[17] Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f) Royale. Aquatic Toxicol. 2006:80:405-415. DOI: 10.1016/j.aquatox.2006.10.006.10.1016/j.aquatox.2006.10.00617113658Open DOISearch in Google Scholar

[18] Rolli NM, Suvarnaknandi SS, Mulgund GS, Ratageri RH, Taranath TC. Biochemical responses and accumulation of cadmium in Spirodela polyrhiza. J Environ Biol. 2010;31:529-532. http://www.jeb.co.in/journal_issues/201007_jul10/paper_23.pdf.Search in Google Scholar

[19] Cuypers A, Koistnen KM, Kokko H, Kärenlampi S, Auriola S, Vangronsveld J. Analysis of bean (Phaseolus vulgaris L.) proteins affected by copper stress. J Plant Physiol. 2005:162:383-392. DOI: 10.1016/j.jplph.2004.07.018.10.1016/j.jplph.2004.07.01815900880Open DOISearch in Google Scholar

[20] Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by Coontail (Ceratophyllum dermersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 2006:65:1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.10.1016/j.chemosphere.2006.03.03316682069Open DOISearch in Google Scholar

[21] Blokhina O, Virolainen E, Fagerstedt KV, Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annal Botany. 2003;91:179-194. DOI: 10.1093/aob/mcf118.10.1093/aob/mcf118424498812509339Open DOISearch in Google Scholar

[22] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry. 2004;65(13):1879-1893. DOI: 10.1016/j.phytochem.2004.06.023.10.1016/j.phytochem.2004.06.02315279994Open DOISearch in Google Scholar

[23] Singh S, Singh S, Ramachandran V, Eapen S. Copper tolerance and response of antioxidative enzymes in axenically grown Brassica juncea (L.) plants. Ecotoxicol Environ Safety. 2010;73:1975-1981. DOI: 10.1016/j.ecoenv.2010.08.020.10.1016/j.ecoenv.2010.08.02020825988Open DOISearch in Google Scholar

[24] Mourato MP, Martins LL, Camposa-Andrada MP. Physiological responses of Lupinus luteus to different copper concentrations. Biol Plantarium. 2009;53:105-111. https://link.springer.com/content/pdf/10.1007%2Fs10535-009-0014-2.pdf.10.1007/s10535-009-0014-2Search in Google Scholar

[25] Cuypers A, Vangronsveld J, Clijsters H. Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol. 2002;159:869-876. DOI: 10.1078/0176-1617-00676.10.1078/0176-1617-00676Open DOISearch in Google Scholar

[26] Karimi P, Khavari-Nejad RA, Niknam V, Ghahremaninejad F, Najafi F. The effects of excess copper on antioxidative enzymes, lipid peroxidation, proline, chlorophyll, and concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii. Sci World J. 2012;2012:1-6. DOI: 10.1100/2012/615670.10.1100/2012/615670350708123213292Open DOISearch in Google Scholar

[27] Meng Q, Zou J, Zou J, Jiang W, Liu D. Effect of Cu2+ concentration on growth, antioxidant enzyme activity and malondialdehide content in garlic (Allium sativum L.). Acta Biol Cracoviensia Series Botan. 2007;49(1):95-101. http://www2.ib.uj.edu.pl/abc/pdf/49_1/12meng.pdf.Search in Google Scholar

[28] Morales JML, Rodriguez-Monroy M, Sepúlveda-Jiménez G. Betacyanin accumulation and guaiacol peroxidase activity in Beta vulgaris L. leaves following copper stress. Acta Soc Bot Pol. 2012;81:193-201. DOI: 10.5586/asbp.2012.019.10.5586/asbp.2012.019Open DOISearch in Google Scholar

[29] Hu C, Zhang L, Hamilton D, Zhou W, Yang T, Zhu D. Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia. 2007;579:211-218. DOI: 10.1007/s10750-006-0404-9.10.1007/s10750-006-0404-9Open DOISearch in Google Scholar

[30] Monferrán MV, Sánchez Agudo JA, Pignata ML, Wunderlin DA. Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut. 2009;157:2550-2576. DOI: 10.1016/j.envpol.2009.02.034.10.1016/j.envpol.2009.02.03419324479Open DOISearch in Google Scholar

[31] Fidalgo R, Azenha M, Silve AF, de Sousan A, Santiago A, Ferraz P, et al. Copper-induced in Solanum nigrum L. and antioxidant defense system responses. Food Energy Security. 2013;2:70-80. DOI: 10.1002/fes3.20.10.1002/fes3.20Open DOISearch in Google Scholar

[32] Hejazi-Mehrizi M, Shariatmadari H, Khoshgoftarmanesh AH, Dehghani F. Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. J Agr Sci Technol. 2012;14(1):205-212. https://www.researchgate.net/publication/260423986_Copper_Effects_on_Growth_Lipid_Peroxidation_and_Total_Phenolic_Content_of_Rosemary_Leaves_under_Salinity_Stress.Search in Google Scholar

[33] Seliga H. Antioxidative activity of copper in root nodules of yellow lupin plants. Acta Physiol Plant. 1999;21:427-431.10.1007/s11738-999-0016-xOpen DOISearch in Google Scholar

[34] Szczodrowska A, Kulbat K, Smolińska B, Leszczyńska J. Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnol Food Sci. 2016;80:29-42. http://www.bfs.p.lodz.pl.Search in Google Scholar

eISSN:
1898-6196
Language:
English