Cite

[1] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325-47. DOI: 10.1016/j.biotechadv.2010.01.004.10.1016/j.biotechadv.2010.01.004Open DOISearch in Google Scholar

[2] Hwang S, Jeong S. Electrospun nano composites of poly(vinyl pyrrolidone)/nano-silver for antibacterial materials. J Nanosci Nanotechnol. 2011;11:610-613. DOI: 10.1166/jnn.2011.3243.10.1166/jnn.2011.3243Open DOISearch in Google Scholar

[3] Deniz AE, Vural HA, Ortaç B, Uyar T. Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater Lett. 2011;65:2941-2943. DOI: 10.1016/j.matlet.2011.06.045.10.1016/j.matlet.2011.06.045Open DOISearch in Google Scholar

[4] Savva I, Krekos G, Taculescu A, Marinica O, Vekas L, Krasia-Christoforou T. Fabrication and characterization of magnetoresponsive electrospun nanocomposite membranes based on methacrylic random copolymers and magnetite nanoparticles. J Nanomater. 2012;2012:1-9. DOI: 10.1155/2012/578026.10.1155/2012/578026Open DOISearch in Google Scholar

[5] Padil VVT, Filip J, Suresh KI, Wacławek S, Černík M. Electrospun membrane composed of poly [acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Adv. 2016;6:110288-110300. DOI: 10.1039/C6RA24036D.10.1039/C6RA24036DSearch in Google Scholar

[6] Gupta SM, Tripathi M. A review of TiO2 nanoparticles. Chinese Sci Bull. 2011;56:1639-1657. DOI: 10.1007/s11434-011-4476-1.10.1007/s11434-011-4476-1Open DOISearch in Google Scholar

[7] Han H, Bai R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res. 2009;48:2891-2898. DOI: 10.1021/ie801362a.10.1021/ie801362aOpen DOISearch in Google Scholar

[8] Hamdi A, Ferreira DP, Ferraria AM, Conceição DS, Vieira Ferreira LF, Carapeto AP, et al. TiO2-CdS nanocomposites: Effect of CdS oxidation on the photocatalytic activity. J Nanomater. 2016;2016:1-11. DOI: 10.1155/2016/6581691.10.1155/2016/6581691Search in Google Scholar

[9] García-Mendoza C, Oros-Ruiz S, Hernández-Gordillo A, López R, Jácome-Acatitla G, Calderón HA, et al. Suitable preparation of Bi2S3 nanorods-TiO2 heterojunction semiconductors with improved photocatalytic hydrogen production from water/methanol decomposition. J Chem Technol Biotechnol. 2016;91:2198-2204. DOI: 10.1002/jctb.4979.10.1002/jctb.4979Open DOISearch in Google Scholar

[10] Baia L, Orbán E, Fodor S, Hampel B, Kedves EZ, Saszet K, et al. Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process. 2016;42:66-71. DOI: 10.1016/j.mssp.2015.08.042.10.1016/j.mssp.2015.08.042Search in Google Scholar

[11] Han H, Riboni F, Karlicky F, Kment S, Goswami A, Sudhagar P, et al. α-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale. 2017;9:134-142. DOI: 10.1039/C6NR06908H.10.1039/606908Open DOISearch in Google Scholar

[12] Singh N, Pandey V, Singh N, Malik MM, Haque FZ. Application of TiO2/SnO2 nanoparticles in photoluminescence based fast ammonia gas sensing. J Opt. 2017;46:199-203. DOI: 10.1007/s12596-017-0404-3.10.1007/s12596-017-0404-3Open DOISearch in Google Scholar

[13] Li N, Li Y, Li W, Ji S, Jin P. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property. J Phys Chem C. 2016;120:3341-3349. DOI: 10.1021/acs.jpcc.5b10752.10.1021/acs.jpcc.5b10752Open DOISearch in Google Scholar

[14] Jampílek J, Král’ová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S. 2015;22:321-361. DOI: 10.1515/eces-2015-0018.10.1515/eces-2015-0018Open DOISearch in Google Scholar

[15] Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H. TiO2 based photocatalytic membranes: A review. J Memb Sci. 2014;472:167-184. DOI: 10.1016/j.memsci.2014.08.016.10.1016/j.memsci.2014.08.016Open DOISearch in Google Scholar

[16] Bet-moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M. TiO2 nanocomposite based polymeric membranes: A review on performance improvement for various applications in chemical engineering processes. Chem Eng J. 2016;283:29-46. DOI: 10.1016/j.cej.2015.06.124.10.1016/j.cej.2015.06.124Open DOISearch in Google Scholar

[17] Michałowicz J. Bisphenol A - Sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37:738-758. DOI: 10.1016/j.etap.2014.02.003.10.1016/j.etap.2014.02.003Open DOISearch in Google Scholar

[18] Chronopoulou L, Palocci C, Valentino F, Pettiti I, Wacławek S, Černík M, et al. Stabilization of iron (micro)particles with polyhydroxybutyrate for in situ remediation applications. Appl Sci. 2016;6:417. DOI: 10.3390/app6120417.10.3390/app6120417Open DOISearch in Google Scholar

[19] Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: A review. J Mol Liq. 2016;214:175-191. DOI: 10.1016/j.molliq.2015.12.013.10.1016/j.molliq.2015.12.013Open DOISearch in Google Scholar

[20] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2015;529:190-194. DOI: 10.1038/nature16185.10.1038/16185Open DOISearch in Google Scholar

[21] Singha AS, Guleria A. Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol. 2014;49:2557-2567. DOI: 10.1080/01496395.2014.929146.10.1080/01496395.2014.929146Open DOISearch in Google Scholar

[22] Jeon C, Park JY, Yoo YJ. Novel immobilization of alginic acid for heavy metal removal. Biochem Eng J. 2002;11:159-166. DOI: 10.1016/S1369-703X(02)00020-7.10.1016/S1369-703X(02)00020-7Open DOISearch in Google Scholar

[23] Thakur S, Kumari S, Dogra P, Chauhan GS. A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions. Carbohydr Polym. 2014;106:276-282. DOI: 10.1016/j.carbpol.2014.02.041.10.1016/j.carbpol.2014.02.041Open DOISearch in Google Scholar

[24] Wacławek S, Chronopoulou L, Petrangeli Papini M, Vinod VTP, Palocci C, Kupčík J, et al. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate. Desalin Water Treat. 2017;69. DOI: 10.5004/dwt.2017.0704.10.5004/dwt.2017.0704Open DOISearch in Google Scholar

[25] Padil VVT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: Characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-14009. DOI: 10.1039/C7RA00464H.10.1039/700464Open DOISearch in Google Scholar

[26] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.10.1016/j.cej.2017.07.132Open DOISearch in Google Scholar

[27] Wacławek S, Antoš V, Hrabák P, Černík M. Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat. 2016;57:26274-26279. DOI: 10.1080/19443994.2015.1119757.10.1080/19443994.2015.1119757Open DOISearch in Google Scholar

[28] Yaqoob S, Ullah F, Mehmood S, Mahmood T, Ullah M, Khattak A, et al. Effect of waste water treated with TiO2 nanoparticles on early seedling growth of Zea mays L. J Water Reuse Desalin. 2017. DOI: 10.2166/wrd.2017.163.10.2166/wrd.2017.163Open DOISearch in Google Scholar

[29] Yang S, Hai FI, Nghiem LD, Nguyen LN, Roddick F, Price WE. Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions. Int Biodeterior Biodegradation. 2013;85:483-490. DOI: 10.1016/j.ibiod.2013.03.012.10.1016/j.ibiod.2013.03.012Open DOISearch in Google Scholar

[30] Khuzwayo Z, Chirwa EMN. Analysis of catalyst photo-oxidation selectivity in the degradation of polyorganochlorinated pollutants in batch systems using UV and UV/TiO2. South African J Chem Eng. 2017;23:17-25. DOI: 10.1016/j.sajce.2016.12.002.10.1016/j.sajce.2016.12.002Open DOISearch in Google Scholar

[31] Padil VVT, Senan C, Wacławek S, Černík M. Electrospun fibers based on Arabic, karaya and kondagogu gums. Int J Biol Macromol. 2016;91:299-309. DOI: 10.1016/j.ijbiomac.2016.05.064.10.1016/j.ijbiomac.2016.05.064Open DOISearch in Google Scholar

[32] Nasikhudin, Ismaya EP, Diantoro M, Kusumaatmaja A, Triyana K. Preparation of PVA/TiO2 Composites Nanofibers by using Electrospinning Method for Photocatalytic Degradation. IOP Conf. Ser. Mater. Sci. Eng. vol. 202, 2017. DOI: 10.1088/1757-899X/202/1/012011.10.1088/1757-899X/202/1/012011Open DOISearch in Google Scholar

[33] Li J-H, Xu Y-Y, Zhu L-P, Wang J-H, Du C-H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Memb Sci. 2009;326:659-666. DOI: 10.1016/j.memsci.2008.10.049.10.1016/j.memsci.2008.10.049Open DOISearch in Google Scholar

[34] Kovacic M, Juretic Perisic D, Biosic M, Kusic H, Babic S, Loncaric Bozic A. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. Environ Sci Pollut Res. 2016;23:14908-14917. DOI: 10.1007/s11356-016-6580-x.10.1007/s11356-016-6580-xOpen DOISearch in Google Scholar

[35] Bodzek M, Rajca M. Photocatalysis in the treatment and disinfection of water. Part I. Theoretical backgrounds. Ecol Chem Eng S. 2012;19:489-512. DOI: 10.2478/v10216-011-0036-5.10.2478/v10216-011-0036-5Open DOISearch in Google Scholar

[36] Bohdziewicz J, Kudlek E, Dudziak M. Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment. Desalin Water Treat. 2016;57:1552-1563. DOI: 10.1080/19443994.2014.988411.10.1080/19443994.2014.988411Open DOISearch in Google Scholar

[37] Wang R, Ren D, Xia S, Zhang Y, Zhao J. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). J Hazard Mater. 2009;169:926-932. DOI: 10.1016/j.jhazmat.2009.04.036.10.1016/j.jhazmat.2009.04.036Open DOISearch in Google Scholar

[38] Chong MN, Jin B. Photocatalytic treatment of high concentration carbamazepine in synthetic hospital wastewater. J Hazard Mater. 2012;199-200:135-142. DOI: 10.1016/j.jhazmat.2011.10.067.10.1016/j.jhazmat.2011.10.067Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English