Cite

[1] Castillo A, Cheali P, Gómez V, Comas J, Poch M, Sin G. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts. Environ Model Softw. 2016;84:177-192. DOI: 10.1016/j.envsoft.2016.06.019.10.1016/j.envsoft.2016.06.019Open DOISearch in Google Scholar

[2] Arulmathi P, Elangovan G, Begum AF. Optimization of electrochemical treatment process conditions for distillery effluent using response surface methodology. Scientific World J. 2015;1-9. DOI: 10.1155/2015/581463.10.1155/2015/581463Open DOISearch in Google Scholar

[3] GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ. Electrochemical degradation of Acid Yellow 23 by anodic oxidation-optimization of operating parameters. J Environ Eng. 2016;142 p.04016052. DOI: 10.1061/(ASCE)EE.1943-7870.0001127.10.1061/(ASCE)EE.1943-7870.0001127Open DOISearch in Google Scholar

[4] Tolian G, Jafari SA. Zarei S. Optimization of biosorption of nickel(II) and cadmium(II) by indigenous seaweed Enteromorpha using response surface methodology. Water Qual Res J Can. 2015;50(2):109-122. DOI: 10.2166/wqrjc.2015.007.10.2166/wqrjc.2015.007Open DOISearch in Google Scholar

[5] Fakhri A. Investigation of mercury(II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Saf Environ Prot. 2015;93:1-8. DOI: 10.1016/j.psep.2014.06.003.10.1016/j.psep.2014.06.003Open DOISearch in Google Scholar

[6] Yaqub A, Isa MH, Ajab H. Electrochemical degradation of polycyclic aromatic hydrocarbons in synthetic solution and produced water using a Ti/SnO2-Sb2O5-RuO2 anode. J Environ Eng. 2015;141(4):p.04014074. DOI: 10.1061/(ASCE)EE.1943-7870.0000900.10.1061/(ASCE)EE.1943-7870.0000900Open DOISearch in Google Scholar

[7] Yaqub A, Isa MH, Kutty SRM, Ajab H. Electrochemical degradation of PAHs in produced water using Ti/Sb2O5-SnO2-IrO2 anode. Electrochemistry. 2014;82(11):979-984. DOI: 10.5796/electrochemistry.82.979.10.5796/electrochemistry.82.979Open DOISearch in Google Scholar

[8] Balaam JL, Chan-Man Y, Roberts PH, Thomas KV. Identification of non-regulated pollutants in North Sea-produced water discharges. Environ Toxicol Chem. 2009;28(6):1159-1167. DOI: 10.1897/08-488.1.10.1897/08-488.119182854Search in Google Scholar

[9] Stephenson MT. Components of produced water: A compilation of industry studies. Soc Petrol Eng J. 1992;548-603. DOI: 10.2118/23313-PA.10.2118/23313-Open DOISearch in Google Scholar

[10] An C, Huang G, Yao Y, Zhao S. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Sci Total Environ. 2017;579:537-556. DOI: 10.1016/j.scitotenv.2016.11.062.10.1016/j.scitotenv.2016.11.06227865526Search in Google Scholar

[11] Frost TK, Johnsen S, Utvik TIR. Produced water discharges to the North Sea, fate and effects in the water column. OLF (Oljeindustriens Landsforening); December 1998. http://www.olf.no/staticen/rapporter/producedwater/.Search in Google Scholar

[12] Panić VV, Dekanski AB, Mišković-Stanković VB, Milonjić SK, Nikolić BŽ. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol-gel procedure. J Serb Chem Soc. 2010;75(10):1413-1420. DOI: 10.1039/B921582D.10.1039/b921582dSearch in Google Scholar

[13] Kristóf J, Mihály J, Daolio S, De-Battisti A, Nanni L, Piccirillo C. Hydrolytic reactions in hydrated iridium chloride coatings. J Electroanal Chem. 1997;434:99-104. DOI: 10.1016/S0022-0728(96)05068-1.10.1016/S0022-0728(96)05068-1Open DOISearch in Google Scholar

[14] Miyata M, Ihara I, Yoshid G, Toyod K, Umetsu K. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci Technol. 2011;63(3):456-461. DOI: 10.2166/wst.2011.243.10.2166/wst.2011.24321278467Open DOISearch in Google Scholar

[15] Wang Y, Li M, Feng C, Zhang Z. Electrochemical oxidation of sulfide in oil wastewater using Ti/IrO2 anode. Environ Prog Sust Energy. 2012;31(4):500-506. DOI 10.1002/ep.10565.10.1002/ep.10565Open DOISearch in Google Scholar

[16] Liu Y, Li L, Goel R. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions. J Hazard Mater. 2009;167(1):959-965. DOI: 10.1016/j.jhazmat.2009.01.082.10.1016/j.jhazmat.2009.01.08219250739Open DOISearch in Google Scholar

[17] Yaqub A, Isa MH, Kutty SRM, Ajab H. Surface characteristics of Ti/IrO2 anode material and its electrocatalytic properties for polycyclic aromatic hydrocarbons (PAHs) degradation in aqueous solution. J New Mater Electrochem Sys. 2014;17(1):39-44. http://www.groupes.polymtl.ca/jnmes/modules/journal/index.php/content0827.html.10.14447/jnmes.v17i1.442Search in Google Scholar

[18] Yaqub A, Isa MH, Ajab H, Junaid M. Electrochemical degradation of petroleum hydrocarbons (PAHS) from synthetic aqueous solutions. Petro Chem. 2017;57(5):457-465. DOI: 10.1134/S0965544117050140.10.1134/S0965544117050140Open DOISearch in Google Scholar

[19] Vijayaraghavan K, Ramanujam T, Balasubramanian N. In situ hypochlorous acid generation for the treatment of textile wastewater. Color Technol. 2001;117:49-53. DOI: 10.1111/j.1478-4408.2001.tb00335.x.10.1111/j.1478-4408.2001.tb00335.xOpen DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English