Open Access

CO2 Capture by Absorption in Activated Aqueous Solutions of N,N-Diethylethanoloamine


Cite

[1] Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol. 2002;36(20):4467-4475. DOI: 10.1021/es0158861.10.1021/es015886112387425Search in Google Scholar

[2] Yoon JH, Baek JI, Yamamoto Y, Komai T, Kawamura T. Kinetics of removal of carbon dioxide by aqueous 2-amino-2-methyl-1,3-propanediol. Chem Eng Sci. 2003;58(23-24):5229-5237. DOI: 10.1016/j.ces.2003.08.019.10.1016/j.ces.2003.08.019Search in Google Scholar

[3] Nagy T, Mizsey P. Model verification and analysis of the CO2-MEA absorber-desorber system. Int J Greenhouse Gas Control. 2015;39:236-244. DOI: 10.1016/j.ijggc.2015.05.017.10.1016/j.ijggc.2015.05.017Search in Google Scholar

[4] Sutar PN, Jha A, Vaidya PD, Kenig EY. Secondary amines for CO2 capture: A kinetic investigation using N-ethylmonoethanolamine. Chem Eng J. 2012;207-208:718-724. DOI: 10.1016/j.cej.2012.07.042.10.1016/j.cej.2012.07.042Search in Google Scholar

[5] Putta KR, Pinto DDD, Svendsen HF, Knuutila HK. CO2 absorption into loaded aqueous MEA solutions: Kinetics assessment using penetration theory. Int J Greenhouse Gas Control. 2016;53:338-353. DOI: 10.1016/j.ijggc.2016.08.009.10.1016/j.ijggc.2016.08.009Search in Google Scholar

[6] Choi JH, Kim YE, Nam SC, Yun SH, Yoon Y Il, Lee J-H. CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups. Korean J Chem Eng. 2016;33(11):3222-3230. DOI: 10.1007/s11814-016-0180-9.10.1007/s11814-016-0180-9Search in Google Scholar

[7] Filburn T, Helble JJ, Weiss RA. Development of supported ethanolamines and modified ethanolamines for CO2 capture. Indust Eng Chem Res. 2005;44(5):1542-1546. DOI: 10.1021/ie0495527.10.1021/ie0495527Search in Google Scholar

[8] Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M. CO2 capture by tertiary amine absorbents: A performance comparison study. Indust Eng Chem Res. 2013;52(24):8323-8331. DOI: 10.1021/ie400825u.10.1021/ie400825uSearch in Google Scholar

[9] Monteiro JGMS, Majeed H, Knuutila H, Svendsen HF. Kinetics of CO2 absorption in aqueous blends of N,N-diethylethanolamine (DEEA) and N-methyl-1,3-propane-diamine (MAPA). Chem Eng Sci. 2015;129:145-155. DOI: 10.1016/j.ces.2015.02.001.10.1016/j.ces.2015.02.001Search in Google Scholar

[10] Kierzkowska-Pawlak H. Kinetics of CO2 absorption in aqueous N,N-diethylethanolamine and its blend with N-(2-aminoethyl)ethanolamine using a stirred cell reactor. Int J Greenhouse Gas Control. 2015;37:76-84. DOI: 10.1016/j.ijggc.2015.03.002.10.1016/j.ijggc.2015.03.002Search in Google Scholar

[11] Littel RJ, Van Swaaij WPM, Versteeg GF. Kinetics of carbon dioxide with tertiary amines in aqueous solution. AIChE J. 1990;36(11):1633-1640. DOI: 10.1002/aic.690361103.10.1002/aic.690361103Search in Google Scholar

[12] Li J, Henni A, Tontiwachwuthikul P. Reaction kinetics of CO2 in aqueous ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique. Indust Eng Chem Res. 2007;46(13):4426-4434. DOI: 10.1021/ie0614982.10.1021/ie0614982Search in Google Scholar

[13] Yih SM, Shen KP. Kinetics of carbon dioxide reaction with sterically hindered 2-amino-2-methyl-1-propanol aqueous solutions. Indust Eng Chem Res. 1988;27(12):2237-2241. DOI: 10.1021/ie00084a008.10.1021/ie00084a008Search in Google Scholar

[14] Bougie F, Iliuta MC. Sterically hindered amine-based absorbents for the removal of CO2 from gas streams. J Chem Eng Data. 2012;57(3):635-669. DOI: 10.1021/je200731v.10.1021/je200731vSearch in Google Scholar

[15] Choi JH, Oh SG, Yoon YI, Jeong SK, Jang KR, Nam SC. A study of species formation of aqueous tertiary and hindered amines using quantitative 13C NMR spectroscopy. J Ind Eng Chem. 2012;18(1):568-573. DOI: 10.1016/j.jiec.2011.11.053.10.1016/j.jiec.2011.11.053Search in Google Scholar

[16] Saha AK, Bandyopadhyay SS, Biswas AK. Kinetics of absorption of CO2 into aqueous solutions of 2-amino-2-methyl-1-propanol. Chem Eng Sci. 1995;50(22):3587-3598. DOI: 10.1016/0009-2509(95)00187-A.10.1016/0009-2509(95)00187-ASearch in Google Scholar

[17] Ume CS, Ozturk MC, Alper E. Kinetics of CO2 absorption by a blended aqueous amine solution. Chem Eng Technol. 2012;35(3):464-468. DOI: 10.1002/ceat.201100394.10.1002/ceat.201100394Search in Google Scholar

[18] Vaidya PD, Kenig EY. Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources. Chem Eng Sci. 2007;62(24):7344-7350. DOI: 10.1016/j.ces.2007.08.015.10.1016/j.ces.2007.08.015Search in Google Scholar

[19] Kierzkowska-Pawlak H, Chacuk A. Numerical simulation of CO2 absorption into aqueous methyldiethanolamine solutions. Korean J Chem Eng. 2012;29(6):707-715. DOI: 10.1007/s11814-011-0244-9.10.1007/s11814-011-0244-9Search in Google Scholar

[20] Choi W, Min B, Seo J, Park S, Oh K. Effect of ammonia on the absorption kinetics of carbon dioxide into aqueous 2-amino-2-methyl-1-propanol solutions. Ind Chem Eng Res. 2009;48(8):4022-4029. DOI: 10.1021/ie8018438.10.1021/ie8018438Search in Google Scholar

[21] Majeed H. Reactive Absorption of CO2 in Single and Blended Amine Systems[PhD Thesis]. Trondheim: Norwegian University of Science and Technology;2013.Search in Google Scholar

[22] Lu JG, Zheng YF, Cheng MD, Wang LJ. Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions. J Membr Sci. 2007;289(1):138-149. DOI: 10.1016/j.memsci.2006.11.042.10.1016/j.memsci.2006.11.042Search in Google Scholar

eISSN:
1898-6196
Language:
English