Cite

[1] Stockholm Convention on Persistent Organic Pollutants. http://chm.pops.int.Search in Google Scholar

[2] Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93(2):223-241. DOI: 10.1093/toxsci/kfl055.10.1093/toxsci/kfl055Search in Google Scholar

[3] International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Monographs/vol100F/100F-22-Index-tables.php.Search in Google Scholar

[4] EPA Method 4435, Method for Toxic Equivalents (TEQS) Determinations for Dioxin-Like Chemical Activity with the CALUX® Bioassay. http://www.xenco.com/content/pdf/tech/SW846/SW846-4000series/SW846-4435.pdf.Search in Google Scholar

[5] Kukučka P, Audy O, Kohoutek J, Holt E, Kalábová T, Holoubek I, et al. Source identification, spatiotemporal distribution and ecological risk of persistent organic pollutants in sediments from the upper Danube catchment. Chemosphere. 2015;138:777-783. DOI: 10.1016/j.chemosphere.2015.08.001.10.1016/j.chemosphere.2015.08.001Search in Google Scholar

[6] Lee WJ, Shih SI, Chang CY, Lai YC, Wang LC, Chang-Chien GP. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans from contaminated soils. J Hazard Mater. 2008;160(1):220-227. DOI: 10.1016/j.jhazmat.2008.02.113.10.1016/j.jhazmat.2008.02.113Search in Google Scholar

[7] Kasai E, Harjanto S, Terui T, Nakamura T, Waseda Y. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere. 2000;41(6):857-864. DOI: 10.1016/S0045-6535(99)00535-4.10.1016/S0045-6535(99)00535-4Search in Google Scholar

[8] Reynier N, Blais JF, Mercier G, Besner S. Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant. Environ Technol. 35(1-4):177-186. DOI: 10.1080/09593330.2013.822005.10.1080/09593330.2013.822005Search in Google Scholar

[9] Kim Y, Lee D. Solubility enhancement of PCDD/F in the presence of dissolved humic matter. J Hazard Mater. 2002;91(1):113-127. DOI: 10.1016/S0304-3894(01)00364-8.10.1016/S0304-3894(01)00364-8Search in Google Scholar

[10] Kulkarni PS, Crespo JG, Afonso CAM. Dioxins sources and current remediation technologies - A review. Environ Int. 2008;34(1):139-153. DOI: 10.1016/j.envint.2007.07.009.10.1016/j.envint.2007.07.00917826831Search in Google Scholar

[11] Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. J Hazard Mater. 2007;146(3):617-623. DOI: 10.1016/j.jhazmat.2007.04.075.10.1016/j.jhazmat.2007.04.07517531376Search in Google Scholar

[12] Tiwari D, Lee SM. Ferrate(VI) in the Treatment of Wastewaters: A New Generation Green Chemical. In: Waste Water - Treatment and Reutilization. InTech; 2011. DOI: 10.5772/15500.10.5772/15500Search in Google Scholar

[13] Jiang JQ. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol. 2014;89(2):165-177. DOI: 10.1002/jctb.4214.10.1002/jctb.4214Search in Google Scholar

[14] Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R. Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod. 2014;77:10-21. DOI: 10.1016/j.jclepro.2013.12.026.10.1016/j.jclepro.2013.12.026Search in Google Scholar

[15] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.10.1016/j.jhazmat.2013.12.06224457611Search in Google Scholar

[16] Grittini C, Malcomson M, Fernando Q, Korte N. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Technol. 1995;29(11):2898-2900. DOI: 10.1021/es00011a029.10.1021/es00011a02922206541Search in Google Scholar

[17] Zhou HY, Xu XH, Wang DH. Catalytic dechlorination of chlorobenzene in water by Pd/Fe bimetallic system. J Environ Sci (China). 2003;15(5):647-651. http://www.ncbi.nlm.nih.gov/pubmed/14562926.Search in Google Scholar

[18] Kim JH, Tratnyek PG, Chang YS. Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol. 2008;42(11):4106-4112. DOI: 10.1021/es702560k.10.1021/es702560k18589973Search in Google Scholar

[19] Wang Z, Huang W, Peng P, Fennell DE. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010;78(2):147-151. DOI: 10.1016/j.chemosphere.2009.09.066.10.1016/j.chemosphere.2009.09.06619889441Search in Google Scholar

[20] Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist Rl, Bjerg Pl. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit Rev Environ Sci Technol. 2010;40(1):55-91. DOI: 10.1080/10643380802039303.10.1080/10643380802039303Search in Google Scholar

[21] Certified Reference Material BCT-529. https://ec.europa.eu/jrc/sites/default/files/rm/BCR-529_cert.pdf.Search in Google Scholar

[22] Antunes P, Viana P, Vinhas T, Capelo JL, Rivera J, Gaspar EMSM. Optimization of pressurized liquid extraction (PLE) of dioxin-furans and dioxin-like PCBs from environmental samples. Talanta. 2008;75(4):916-925. DOI: 10.1016/j.talanta.2007.12.042.10.1016/j.talanta.2007.12.04218585164Search in Google Scholar

[23] Hong B, Garabrant D, Hedgeman E, Demond A, Gillespie B, Chen Q, et al. Impact of WHO 2005 revised toxic equivalency factors for dioxins on the TEQs in serum, household dust and soil. Chemosphere. 2009;76(6):727-733. DOI: 10.1016/j.chemosphere.2009.05.034.10.1016/j.chemosphere.2009.05.03419573893Search in Google Scholar

[24] ČSN EN 1948-2 (834745) - Technické normy ČSN - Stanovení hmotnostní koncentrace PCDD/PCDF - Část 2: Extrakce a čištění. (Technical standards CSN - Determination of mass concentration of PCDD / PCDF - Part 2: Extraction and purification). http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=834745-csn-en-1948-2&kat=77746.Search in Google Scholar

[25] ČSN EN 1948-3 (834745) - Technické normy ČSN - Stanovení hmotnostní koncentrace PCDD/PCDF - Část 3: Identifikace a kvantitativní stanovení. (Technical standards CSN - Determination of mass concentration of PCDD / PCDF - Part 3: Identification and quantification). http://www.technicke-normy-csn.cz/inc/nahled_normy.php?norma=834745-csn-en-1948-3&kat=77749.Search in Google Scholar

[26] Theron J, Walker JA, Cloete TE. Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol. 2008;34(1):43-69. DOI: 10.1080/10408410701710442.10.1080/1040841070171044218259980Search in Google Scholar

[27] Rickman KA, Mezyk SP. Kinetics and mechanisms of sulfate radical oxidation of β-lactam antibiotics in water. Chemosphere. 2010;81(3):359-365. DOI: 10.1016/j.chemosphere.2010.07.015.10.1016/j.chemosphere.2010.07.01520701949Search in Google Scholar

[28] Wojnárovits L, Takács E. Rate coefficients of hydroxyl radical reactions with pesticide molecules and related compounds: A review. Radiat Phys Chem. 2014;96:120-134. DOI: 10.1016/j.radphyschem.2013.09.003.10.1016/j.radphyschem.2013.09.003Search in Google Scholar

[29] Kim JH, Lee JM, Lee HS, Kim JH, Lee JW, Chang YS, et al. Degradation of Polychlorinated Dibenzo-p-Dioxins/Furans Using Heat-Activated Persulfate. Proc Sixth Int Conf Remediation of Chlorinated and Recalcitrant Compounds. Monterey. CA: 2008. http://www.ebs.ieh.ohsu.edu/tratnyek/resources/docs/KimChangNurmiTratnyek08-PCDDs.pdf. Search in Google Scholar

eISSN:
1898-6196
Language:
English