Cite

[1] Łozowicka B, Hrynko I, Kaczyński P. Occurrence of pesticide residues in fruit from Podlasie (Poland) in 2012. J Plant Protection Res. 2015;55(2):142-150. DOI: 10.1515/jppr-2015-001810.1515/jppr-2015-0018Search in Google Scholar

[2] Matyjaszczyk E. Active substances used in plant protection in Poland after the European Union accession. J Plant Protection Res. 2011;51(3):217-224. DOI: 10.2478/v10045-011-0037-5.10.2478/v10045-011-0037-5Search in Google Scholar

[3] Stenersen J. Chemical Pesticides: Mode of Action and Toxicology. N.W. Corporate Blvd., Boca Raton: Florida CRC Press LLC; 2004. https://books.google.cz/books?hl=pl&lr=&id=WjReuSXxl4YC&oi=fnd&pg=PA1&dq=Chemical+pesticides:+mode+of+action+and+toxicology&ots=lNAfl3s3M4&sig=B8jCFopCE56B-muyDMG-Kc7d67U&redir_esc=y#v=onepage&q=Chemical%20pesticides%3A%20mode%20of%20action%20and%20toxicology&f=false.Search in Google Scholar

[4] Likun G, Zhihui B, Bo J, Qing H, Huili W, Guoqiang Z, Hongxun Z. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere. J Environ Sci. 2010;22(1):134-141. DOI: 10.1016/S1001-0742(09)60084-X.10.1016/S1001-0742(09)60084-XSearch in Google Scholar

[5] Wachowska U, Stasiulewicz-Paluch AD, Głowacka K, Mikołajczyk W, Kucharska K. Response of epiphytes and endophytes isolated from winter wheat. Grain to biotechnological and fungicidal treatments. Pol J Environ Stud. 2013;22(1):267-273. http://www.pjoes.com/pdf/22.1/Pol.J.Environ.Stud.Vol.22.No.1.267-273.pdf.Search in Google Scholar

[6] Bebber DP, Holmes T, Gurr SJ. The global spread of crop pests and pathogens. J Global Ecol Biogeog. 2014;23:1398-1407. DOI: 10.1111/geb.1221.Search in Google Scholar

[7] Patyka W, Gnatiuk T, Zhytkevych N, Kalinichenko A, Frączek K. Occurence of the pathogenic bacteria Pantoea agglomerans in soybean cultivation. J Progress Plant Protection /Postępy w Ochronie Roślin. 2015;55(3):280-285. DOI: 10.14199/ppp-2015-049.10.14199/ppp-2015-049Search in Google Scholar

[8] Trindade RS, Rodrigues R, Teixeira A, Gonsalves LS. Critical disease components of common bacteria blight to effectively evaluate resistant genotypes of snap bean. J Plant Pathol. 2012;78(3):201-206. DOI: 10.1007/s10327-012-0374-x.10.1007/s10327-012-0374-xSearch in Google Scholar

[9] Rukayadi Y, Suwanto A, Tjahjono B, Harling R. Survival and epiphytic ness of a mutant of Xanthomonas campestris pv. glycines. Appl Environ Microbiol. 2000;66(3):1183-1189. DOI: 10.1128/aem.66.3.1183-1189.2000.10.1128/AEM.66.3.1183-1189.20009196010698789Search in Google Scholar

[10] Stockwell VO, Duffy B. Use of antibiotics in plant agriculture. Antibiotic resistance in animal and public health. Rev Sci Tech Off Int Epiz. 2012;31(1):199-210. http://ir.library.oregonstate.edu/xmlui/handle/1957/39357.10.20506/rst.31.1.210422849276Search in Google Scholar

[11] Fischer SE, Jofré EC, Cordero PV, Gutiérrez Mañero FJ, Mori GB. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek, Int J General Mol Microbiol. 2010;97(3):241-251. DOI: 10.1007/s10482-009-9405-9.10.1007/s10482-009-9405-920020326Search in Google Scholar

[12] Imfeld G, Vuilleumier S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur J Soil Biol. 2012;49:22-30. DOI: 10.1016/j.ejsobi.2011.11.010.10.1016/j.ejsobi.2011.11.010Search in Google Scholar

[13] Khudhur AM, Askar KA. Effect of some pesticides on growth, nitrogen fixation and nifgenes in Azotobacter chroococcum and Azotobacter vinelandii isolated from soil. J Toxicol Environ Health Sci. 2013;5(9):166-171. DOI: 10.5897/JTEHS12.029.10.5897/JTEHS12.029Search in Google Scholar

[14] Jastrzebska E. The effect of Chloropyriphos and Teflubenzuron on the enzymatic activities of soil. Pol J Environ Stress. 2011;20:903-910. http://www.pjoes.com/pdf/20.4/Pol.J.Environ.Stud.Vol.20.No.4.903-910.pdf.Search in Google Scholar

[15] Jacobsen CS, Hjelmsø MH. Agricultural soils, pesticides and microbial diversity. J Current Opinion Biotechnol. 2014;27:15-20. DOI: 10.1016/j.copbio.2013.09.003.10.1016/j.copbio.2013.09.00324863892Search in Google Scholar

[16] Lew S, Lew M, Szarek J, Mieszczyński T. Effect of pesticides on soil and aquatic environmental microorganisms - a short review. PSP Fresenius Environ Bull. 2009;18(8):1390-1395. https://www.researchgate.net/publication/236236009_Effect_of_pesticides_on_soil_and_aquatic_environmental_microorganisms_-_A_short_review.Search in Google Scholar

[17] Boldt TS, Jacobsen CS. Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. Federation Eur Microbiol Soc Microbiol Lett. 1998;161:29-35. DOI: 10.1111/j.1574-6968.1998.tb12925.x.10.1111/j.1574-6968.1998.tb12925.xSearch in Google Scholar

[18] Mousumi G., Niladri P, Suprakash P, Kumar P, Murari PH, Debatosh M. Pesticides jiggling microbial transformation of phosphorus in soil. African J Microbiol Res. 2014;8(7):637-643. DOI: 10.5897/AJMR2013.6342.10.5897/AJMR2013.6342Search in Google Scholar

[19] Kumar A, Nayak AK, Shukla AK, Panda BB, Raja R, Shahid M. et al. Microbial biomass and carbon mineralization in agricultural soils as affected by pesticide addition. Bull Environ Contam Toxic. 2012;88:538-542. DOI: 10.1007/s00128-013-1182-5.10.1007/s00128-013-1182-524362819Search in Google Scholar

[20] Kang JW, Khan Z, Doty SL. Biodegradation of trichloroethylene by an endophyte of Hybride poplar. J Appl Environ Microbiol. 2012;78(9):3504-3507. DOI: 10.1128/AEM.06852-11.10.1128/AEM.06852-11334647722367087Search in Google Scholar

[21] Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. J New Phytologist. 2008;179(2):318-333. DOI: 10.1111/j.1469-8137.2008.02446.x.10.1111/j.1469-8137.2008.02446.x19086174Search in Google Scholar

[22] Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D. Horizontal gene transfer to endogenous endophytic bacteria from Poplar improves phytoremediation of toluene. J Appl Environ Microbiol. 2005;71:8500-8505. DOI: 10.1128/AEM.71.12.8500-8505.2005.10.1128/AEM.71.12.8500-8505.2005131737116332840Search in Google Scholar

[23] Lakshmi KB, Madhuri T, Indrani V, Suvarnalatha DP. Effect of triazophos-an organophosphate insecticide onmicrobial population in paddy soils. Int J Cur Res Rev. 2015;7(4):64-67. http://www.scopemed.org/?mno=180863.Search in Google Scholar

[24] Cycon M, Markowicz A, Borymski S, Wójcik M, Piotrowska-Seget Z. Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities. J Environ Manage. 2013;131:55-65. DOI: 10.1016/j.jenvman.2013.09.041.10.1016/j.jenvman.2013.09.04124140487Search in Google Scholar

[25] Maya K, Singh RS, Upadhyay SN, Dubey SK. Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite. J TCP Process Biochem. 2011;46:2130-2136. DOI: 10.1016/j.procbio.2011.08.012.10.1016/j.procbio.2011.08.012Search in Google Scholar

[26] Tago K, Okubo T, Itoh H, Kikuchi Y, Hori T, Sato Y et al. Insecticide-degrading Burkholderia symbionts of the Stinkbug naturally occupy various environments of sugarcane fields in a southeast island of Japan. J Microbes Environ. 2015;30(1):29-36. DOI: 10.1264/jsme2.ME14124.10.1264/jsme2.ME14124435646125736865Search in Google Scholar

[27] Baoguo Z, Bai Z, Hoefel D, Tang L, Wang X, Li B. et al. The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. J Sci Total Environ. 2009;407(6,1):1915-1922. DOI: 10.1016/j.scitotenv.2008.11.049.10.1016/j.scitotenv.2008.11.04919135702Search in Google Scholar

[28] Cycon M, Zmijowska A, Wójcik M, Piotrowska-Seget Z. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manage. 2013;117:7-16. DOI: 10.1016/j.jenvman.2012.12.031.10.1016/j.jenvman.2012.12.03123333465Search in Google Scholar

[29] Navarini L, Balardin RS. Foliar diseases and control by fungicides on yield and quality of wheat grains. J Summa Phytopathologica. 2012;38(4):294-299. DOI: 10.1590/S0100-54052012000400004.10.1590/S0100-54052012000400004Search in Google Scholar

[30] Feng CT, Su HJ, Chen CT, Ho WC, Tsou YR, Chern LL. Inhibitory effects of Chinese medicinal herbs on plant-pathogenic bacteria and identification of the active components from gallnuts of Chinese sumac. J Plant Dis. 2012;96:1193-1197. DOI: 10.1094/PDIS-08-11-0673-RE.10.1094/PDIS-08-11-0673-RE30727060Search in Google Scholar

[31] Youcer-Ali M, Kacem-Chaouche N, Dehimat L, Bataiche I, Kara Ali M, Cawoy H. et al. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. Afr J Microbiol Res. 2014;8(6):476-484. DOI: 10.5897/AJMR2013.6327.10.5897/AJMR2013.6327Search in Google Scholar

[32] Beric T, Kojic M, Stankovic S, Topisirovic L, Degrassi G, Myers M. et al. Antimicrobial activity of Bacillus sp. natural isolates and their potentialuse in the biocontrol of phytopathogenic bacteria. J Food Technol Biotechnol. 2012;50(1):25-31. DOI: 10.1007/978-1-4614-8830-9_5.10.1007/978-1-4614-8830-9_5Search in Google Scholar

[33] Rodríguez IF, Sayago JE, Torres S, Zampini IC, Isla MI, Ordóñez RM. Control of citrus pathogens by protein extracts from Solanum tuberosum tubers. Eur J Plant Pathol. 2015;141(3):585-595. DOI: 10.1007/s10658-014-0566-7.10.1007/s10658-014-0566-7Search in Google Scholar

[34] Janek T, Lukaszewicz M, Krasowska A. Antiadhesive and antimicrobial activities of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. J BMC Microbiol. 2012;13(1):108-115. DOI: 10.1186/1471-2180-12-24.10.1186/1471-2180-12-24331074422360895Search in Google Scholar

[35] Kalyanasundaram D, Kavitha S. Effect of butachlor on the microbial population of direct sown rice. J World Acad Sci. Eng Technol. 2012;69:853-855. scholar.waset.org/1999.0/14368.Search in Google Scholar

[36] Byrne ST, Gu P, Zhou J, Denkin SM, Chong C, Sullivan D. Pyrrolidine dithiocarbamate and diethyldithiocarbamate are active against growing and nongrowing persister Mycobacterium tuberculosis. J Antimicrobial Agents Chemotherapy. 2007;51:4495-4497. DOI: 10.1128/AAC.00753-07.10.1128/AAC.00753-07216801617876006Search in Google Scholar

[37] Whitehorn PR, Connor SO, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. J Sci. 2012;336:351-352. DOI: 10.1126/science.1215025.10.1126/science.121502522461500Search in Google Scholar

[38] Litvishko VS. Reducing toxicity chemicals plant protection products. Eur Sci Rev. Vienna: “East West”. 2014;5-6:112-114. https://ew-a.org/upload/iblock/3d6/ESR_5-6_2014.pdf.Search in Google Scholar

eISSN:
1898-6196
Language:
English