Cite

[1] Alcade M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trend Biotechnol. 2006;24:281-287. DOI: 10.1016/j.tibtech.2006.04.002.10.1016/j.tibtech.2006.04.00216647150Search in Google Scholar

[2] Ayotamuno JM, Kogbara RB, Agoro OS. Biostimulation supplemented with phytoremediation in the reclamation of a petroleum contaminated soil. World J Microb Biot. 2009;25:1567-1572. DOI: 10.1007/s11274-009-0045-z.10.1007/s11274-009-0045-zSearch in Google Scholar

[3] Nath A, Chakraborty S, Bhattacharjee C. 20 - bioreactor and enzymatic reactions in bioremediation. In: Das S, editor. Microbial Biodegradation and Bioremediation. Elsevier Inc. 2014, 455-495. DOI: 10.1016/B978-0-12-800021-2.00020-010.1016/B978-0-12-800021-2.00020-0Search in Google Scholar

[4] Rayu S, Karpozaus DG, Singh BK. Emerging technologies in bioremediation: constraints and opportunities. Biodegradation. 2012;23:917-926. DOI: 10.1007/s10532-012-9576-3.10.1007/s10532-012-9576-322836784Search in Google Scholar

[5] Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotech Adv. 2015;33:745-755. DOI: 10.1016/j.biotechadv.2015.05.003.10.1016/j.biotechadv.2015.05.00326008965Search in Google Scholar

[6] Singh A, Kuhad RC, Ward OP. Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP. editors. Advances in Applied Bioremediation. Berlin. Heidelberg: Springer; 2009;17:1-20. DOI: 10.1007/978-3-540-89621-0_1.10.1007/978-3-540-89621-0_1Search in Google Scholar

[7] Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotech Res Inter. 2011;1-13. ID 941810. DOI: 10.4061/2011/941810.10.4061/2011/941810304269021350672Search in Google Scholar

[8] Desai C, Pathak H, Madamwar D. Advances in molecular and “-omics” technologies to gauge microbial communities and bio remediation at xenobiotic/anthropogen contaminated sites. Biores Technol. 2009;101(6):1558-156. DOI: 10.1016/j.biortech.2009.10.080.10.1016/j.biortech.2009.10.08019962886Search in Google Scholar

[9] Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett. 2014;36:1129-1139. DOI: 10.1021/es203753b.10.1021/es203753b22409265Search in Google Scholar

[10] Simarro R, González N, Bautista LF, Molina MC. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: Change in bacterial community. J. Hazard Mater. 2013;262:158-167. DOI: 10.1016/j.jhazmat.2013.08.02510.1016/j.jhazmat.2013.08.02524025312Search in Google Scholar

[11] Hammond-Kosack KE. Biotechnology: Plant Protection. In: Smithers G, editor. Reference Module in Food Science. Elsevier Inc. 2014. DOI: 10.1016/B978-0-444-52512-3.00248-510.1016/B978-0-444-52512-3.00248-5Search in Google Scholar

[12] Mani D. Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol. 2014;11:843-872. DOI: 10.1007/s13762-013-0299-8.10.1007/s13762-013-0299-8Search in Google Scholar

[13] Kalantary RR, Mohseni-Bandpi A, Esrafili A, Nasseri S, Ashmagh FR, Jorfi S, et al. Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil. J Environ Health Sci Eng. 2014;12(1):143. DOI: 10.1186/s40201-014-0143-1.10.1186/s40201-014-0143-1430198725610635Search in Google Scholar

[14] Wołejko E, Butarewicz A, Wydro U, Łoboda T. Advantages and potential risks of municipal sewage sludge application to urban soil. Desalin Water Treat. 2014;52:3732-3742. DOI: 10.1080/19443994.2014.884714.10.1080/19443994.2014.884714Search in Google Scholar

[15] Jovančićević B, Antić M, Pavlović I, Vrvić M, Beškoski V, Kronimus A, et al. Transformation of petroleum saturated hydrocarbons during soil bioremediation experiments. Water Air Soil Pollut. 2008;190:299-307. DOI: 10.1007/s11270-007-9601-z.10.1007/s11270-007-9601-zSearch in Google Scholar

[16] Juwarkar AA, Singh SK, Mudhoo A. A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol. 2010;9:215-288. DOI: 10.1007/s11157-010-9215-6.10.1007/s11157-010-9215-6Search in Google Scholar

[17] Olkowska E, Ruman M, Kowalska A, Polkowska Ż. Determination of surfactants in environmental samples. Part I. Cationic compounds. Ecol Chem Eng S. 2013;20(1):69-77. DOI: 10.2478/eces-2013-0005.10.2478/eces-2013-0005Search in Google Scholar

[18] Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J Environ Chem Eng. 2014;2(1): 239-259. DOI: 10.1016/j.jece.2013.12.019.10.1016/j.jece.2013.12.019Search in Google Scholar

[19] Lors C, Damidot D, Ponge JF, Périé F. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut. 2012;165:11-17. DOI: 10.1016/j.envpol.2012.02.004.10.1016/j.envpol.2012.02.00422390976Search in Google Scholar

[20] Piekutin J, Skoczko I, Wysocki R. Zastosowanie koagulacji do usuwania związków ropopochodnych po napowietrzaniu. (Application of coagulation process for removal of petroleum hydrocarbons after aeration). Roczn Ochr Środ. 2015;17:1715-1726.Search in Google Scholar

[21] Piekutin J, Skoczko I. Use of stripping tower and reverse osmosis in removal of petroleum hydrocarbons from water. Desalin Water Treat. 2014;52(19-21):3714-3718. DOI: 10.1080/19443994.2014.887497.10.1080/19443994.2014.887497Search in Google Scholar

[22] Mukherjee K, Saha R, Ghosh A, Ghosh SK, Maji PK, Saha B. Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueus extract of sugarcane bagasse. Res Chem Intermed. 2014;40:1727-1734. DOI: 10.1007/s11164-013-1077-4.10.1007/s11164-013-1077-4Search in Google Scholar

[23] Sejakova Z, Dercova K, Tothova L. Biodegradation and ecotoxicity of soil contaminated by pentachlorophenol applying bioaugmentation and addition of sorbents. World J Microbiol Biotechnol. 2009;25:243-252. DOI: 10.1007/s11274-008-9885-1.10.1007/s11274-008-9885-1Search in Google Scholar

[24] Semenyuk NN, Yatsenko VS, Strijakova ER, Filonov AE, Petrikov KV, Zavgorodnyaya YA, et al. Effect of activated charcoal on bioremediation of diesel fuel contaminated soil. Microbiology. 2014;83(5):589-598. DOI: 10.1134/S0026261714050221.10.1134/S0026261714050221Search in Google Scholar

[25] Wołejko E, Wydro U, Butarewicz A, Łoboda T. Effects of sewage sludge on the accumulation of heavy metals in soil and in mixtures of lawn grasses. Environ Prot Eng. 2013;39(2):67-76. DOI: 10.5277/EPE130207.Search in Google Scholar

[26] Achiba WB, Gabteni N, Lakhdar A, Laing GD, Verloo M, Jedidi N, et al. Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agric Ecosyst Environ. 2009;130(3-4):156-163. DOI: 10.1016/j.agee.2009.01.001.10.1016/j.agee.2009.01.001Search in Google Scholar

[27] Kabala C, Singh BR. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual. 2001;30:485-492. DOI: 10.2134/jeq2001.302485x.10.2134/jeq2001.302485xSearch in Google Scholar

[28] Singh RP, Agrawal M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 2008;28:347-358. DOI: 10.1016/j.wasman.2006.12.010.10.1016/j.wasman.2006.12.010Search in Google Scholar

[29] Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013;90(4):1317-1332. DOI: 10.1016/j.chemosphere.2012.09.045.10.1016/j.chemosphere.2012.09.045Search in Google Scholar

[30] Gestel KV, Mergaert J, Swings J, Coosemans J, Ryckeboer J. Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut. 2003;125:361-68. DOI: 10.1016/S0269-7491(03)00109-X.10.1016/S0269-7491(03)00109-XSearch in Google Scholar

[31] Coates JD, Chakraborty R, Mcinerney MJ. Anaerobic benzene biodegradation - a new era. Res Microbiol. 2002;153:621-628. DOI: 10.1016/S0923-2508(02)01378-5.10.1016/S0923-2508(02)01378-5Search in Google Scholar

[32] Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J. Biodegradation ofhexahydro1, 3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol. 2002;68:5336-5341. http://aem.asm.org/content/68/11/5336.full.10.1128/AEM.68.11.5336-5341.200212993012406722Search in Google Scholar

[33] Nagata Y, Endo R, Ito M, Ohtsubo Y, Tsuda M. Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl Microbiol Biotechnol. 2007;76(4):741-752. DOI: 10.1007/s00253-007-1066-x.10.1007/s00253-007-1066-xSearch in Google Scholar

[34] Mencía M, Martínez-Ferri AI, Alcalde M, De Lorenzo V. Identification of a γ-hexachlorocyclohexane dehydrochlorinase (LinA) variant with improved expression and solubility properties. Biocatal Biotransfor. 2006;24(3):223-230. DOI: 10.1080/10242420600667809.10.1080/10242420600667809Search in Google Scholar

[35] Passatore L, Rossetti S, Juwarkar AA, Massacci A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J Hazard Mater. 2014;278:189-202. DOI: 10.1016/j.jhazmat.2014.05.051.10.1016/j.jhazmat.2014.05.051Search in Google Scholar

[36] Rubilar O, Tortilla G, Cea M, Acevedo F, Bustamante M, Gianfreda L, et al. Bioremediation of a Chilean Andisol contaminated with pentachlotophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation. 2011;22:31-41. DOI: 10.1007/s10532-010-9373-9.10.1007/s10532-010-9373-9Search in Google Scholar

[37] Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, et al. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem. 2013;60:182-194. DOI: 10.1016/j.soilbio.2013.01.012.10.1016/j.soilbio.2013.01.012Search in Google Scholar

[38] Zaidi A, Wani PA, Khan MS. Bioremediation: A natural method for the management of polluted environment. In: Toxicity of Heavy Metals to Legumes and Bioremediation. Zaidi A, Wani PA, Khan MS, editors. Berlin Heidelberg: Springer; 2012;101-114.10.1007/978-3-7091-0730-0_6Search in Google Scholar

[39] Susarlas, M, Edina VF, McCutcheon SC. Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng. 2002;18:647-658. DOI: 10.1016/s0925-8574(02)00026-5.10.1016/S0925-8574(02)00026-5Search in Google Scholar

[40] Mallavarapu M, Balasubramanian R, Kadiyala V, Nambrattil S, Ravi N. Bioremediation approaches for organic pollutants: A critical perspective. Environ Int. 2011;37(8):1362-1375. DOI: 10.1016/j.envint.2011.06.003.10.1016/j.envint.2011.06.00321722961Search in Google Scholar

[41] Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, et al. The enzymatic basis for pesticide bioremediation. Indian J Microbiol. 2008;48:65-79. DOI: 10.1007/s12088-008-0007-4.10.1007/s12088-008-0007-4345020223100701Search in Google Scholar

[42] Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK. OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes. 2009;2:67. DOI: 10.1186/1756-0500-2-67.10.1186/1756-0500-2-67268386119405962Search in Google Scholar

[43] Arora PK, Srivastava A, Singh VP. Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad. 2010;1:1-8. DOI: 10.4172/2155-6199.1000112.10.4172/2155-6199.1000112Search in Google Scholar

[44] Sing H, Löffler FE, Fathepure BZ. Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture. Biodegradation. 2004;15(3):197-204. DOI: 10.1023/B:BIOD.0000026539.55941.73.10.1023/B:BIOD.0000026539.55941.73Search in Google Scholar

[45] Gossett JM. Sustained aerobic oxidation of vinyl chloride at low oxygen concentrations. Environ Sci Technol. 2010;44(4):1405-1411. DOI: 10.1021/es9033974.10.1021/es903397420092304Search in Google Scholar

[46] Jones JP, O’Hare EJ, Wong LL. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450cam). Eur J Biochem. 2001;268(5):1460-1467. DOI: 10.1046/j.1432-1327.2001.02018.x.10.1046/j.1432-1327.2001.02018.x11231299Search in Google Scholar

[47] Riffaldi R, Levi-Minzi R, Cardelli R, Palumbo S, Saviozzi A. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water Air Soil Pollut. 2006;170(1-4):3-15. DOI: 10.1007/s11270-006-6328-1.10.1007/s11270-006-6328-1Search in Google Scholar

[48] Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci.: Processes Impacts. 2015;17:326-342. DOI: 10.1039/C4EM00627E.10.1039/C4EM00627E25590782Search in Google Scholar

[49] Kim JS, Park JW, Lee SE, Kim JE. Formation of bound residues of 8-hydroxybentazon by oxidoreductive catalysts in soil. J Agric Food Chem. 2002;50(12):3507-3511. DOI: 10.1021/jf011504z.10.1021/jf011504z12033819Search in Google Scholar

[50] Sharma D, Sharma B, Shukla AK. Biotechnological approach of microbial lipase: a review. Biotechnology. 2011;10: 23-40. DOI: 10.3923/biotech.2011.23.40.10.3923/biotech.2011.23.40Search in Google Scholar

[51] Marchut-Mikolajczyk O, Kwapisz E, Wieczorek D, Antczak T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. Int Biodeter Biodegr. 2015;104:142-148. DOI: 10.1016/j.ibiod.2015.05.008.10.1016/j.ibiod.2015.05.008Search in Google Scholar

[52] Rao MA, Scelza R, Scotti R, Gianfreda L. Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr. 2010;10(3):333-353. DOI: 10.4067/S0718-95162010000100008.10.4067/S0718-95162010000100008Search in Google Scholar

[53] Margesin R, Labbé D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol. 2003;69(6):3085-3092. DOI: 10.1128/AEM.69.6.3085-3092.2003.10.1128/AEM.69.6.3085-3092.2003Search in Google Scholar

[54] Ashby MN, Rine J, Mongodin EF, Nelson KE, Dimster-Denk D. Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities. Appl Environ Microbiol. 2007;73(14):4532-4542. DOI: 10.1128/AEM.02956-06.10.1128/AEM.02956-06Search in Google Scholar

[55] Saavedra JM, Acevedo F, González M, Seeger M. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol. 2010;87:1543-1554. DOI 10.1007/s00253-010-2575-6.10.1007/s00253-010-2575-6Search in Google Scholar

[56] Zhang R, Xu X, Chen W, Huang Q. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol. 2015. DOI 10.1007/s00253-015-7099-7.10.1007/s00253-015-7099-7Search in Google Scholar

[57] van der Lelie D, Lesaulnier C, McCorkle S, Geets J, Taghavi S, Dunn J. Use of single-point genome signature tags as a universal tagging method for microbial genome surveys. Appl Environ Microbiol. 2006;72(3):2092-2101. DOI: 10.1128/AEM.72.3.2092-2101.2006.10.1128/AEM.72.3.2092-2101.2006Search in Google Scholar

[58] Mello-Farias PC, Chaves ALS. Biochemical and molecular aspects of toxic metals phytoremediation using transgenic plants. In: Transgenic Approach in Plant Biochemistry and Physiology. Tiznado-Hernandez ME, Troncoso-Rojas R, Rivera-Dominguez MA, editors. Research Signpost, Kerala, India 2008; 253-266.Search in Google Scholar

[59] Sriprang R, Murooka Y. Accumulation and detoxification of metals by plants and microbes. In: Environmental Bioremediation Technologies. Singh SN, Tripathi RD, editors. Berlin Heidelberg: Springer; 2007:77-100. http://link.springer.com/book/10.1007%2F978-3-540-34793-4.Search in Google Scholar

[60] Gupta DK, Huang HG, Corpas FJ. Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res Int. 2013;20(4):2150-2161. DOI: 10.1007/s11356-013-1485-4.10.1007/s11356-013-1485-4Search in Google Scholar

[61] Vallee BL, Auld DS. Zinc coordination, function and structure of zinc enzymes and other proteins. Biochemistry. 1990;29(24):5647-5659. DOI: 10.1021/bi00476a001.10.1021/bi00476a001Search in Google Scholar

[62] Mejárea M, Bülow L. Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 2001;19(2):67-73. DOI: 10.1016/S0167-7799(00)01534-1.10.1016/S0167-7799(00)01534-1Search in Google Scholar

[63] Cai Y, Ma QL. Metal tolerance, accumulation, and detoxicification in plants with emphasis on arsenic in terrestrial plants. In: Biogeochemistry of environmentally important trace elements. Cai Y, Braids OC. editors. Washington, DC: American Chemical Society; 2003;8:95-114. DOI: 10.1021/bk-2003-0835.ch008.10.1021/bk-2003-0835.ch008Search in Google Scholar

[64] Yang X, Jin XF, Feng Y, Islam E. Molecular mechanisms and genetic bases of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol. 2005;47(9):1025-1035. DOI: 10.1111/j.1744-7909.2005.00144.x.10.1111/j.1744-7909.2005.00144.xSearch in Google Scholar

[65] Hossain MA, Piyatida P, da Silva TJA, Fujita M. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Botany. 2012:1-40. DOI: 10.1155/2012/872875.10.1155/2012/872875Search in Google Scholar

[66] Zenk MH. Heavy metal detoxification in higher plants - a review. Gene. 1996;179(1):21-30. DOI: 10.1016/S0378-1119(96)00422-2.10.1016/S0378-1119(96)00422-2Search in Google Scholar

[67] Xiang C, Oliver DJ. Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell. 1998;10:1539-1550. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC144077/pdf/101539.pdf.10.1105/tpc.10.9.15391440779724699Search in Google Scholar

[68] Cherian GM, Chan HM. Biological functions of metallothioneins - a review. In: Metallothionein III: Biological Roles and Medical Implications. Suzuki KT, Kimura M, Imura N, editors. Boston: Birkhauser Verlag; 1993:87-109.Search in Google Scholar

[69] Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO. Plant metallothioneins - metal chelators with ROS scavenging activity. Plant Biol. 2011;13(2):225-232. DOI: 10.1111/j.1438-8677.2010.00398.x.10.1111/j.1438-8677.2010.00398.x21309968Search in Google Scholar

[70] Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S. High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere. 2007;67(6):1117-1126. DOI: 10.1016/j.chemosphere.2006.11.039.10.1016/j.chemosphere.2006.11.03917223164Search in Google Scholar

[71] Wood TK. Molecular approaches in bioremediation. Curr Opin Biotechnol. 2008;19(6):572-578. DOI: 10.1016/j.copbio.2008.10.003.10.1016/j.copbio.2008.10.00319000765Search in Google Scholar

[72] Heaton ACP, Rugh CL, Wang NJ, Meagher RB. Physiological responses of transgenic merA-tobacco (Nicotiana tabacum) to foliar and root mercury exposure. Water Air Soil Pollut. 2005;161:137-155. DOI: 10.1007/s11270-005-7111-4.10.1007/s11270-005-7111-4Search in Google Scholar

[73] Bode M, Stobe P, Thiede B, Schuphan I, Schmidt B. Biotransformation of atrazine in transgenic tobacco cell culture expressing human P450. Pest Manage Sci. 2004;60:49-58. DOI: 10.1002/ps.770.10.1002/ps.77014727741Search in Google Scholar

[74] Neufeld JD, Mohn WW, de Lorenzo V. Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol. 2006;8(1):126-140. DOI: 10.1111/j.1462-2920.2005.00875.x.10.1111/j.1462-2920.2005.00875.x16343328Search in Google Scholar

[75] Fan G, Cang L, Qin W, Zhou C. Gomes HI, Zhou D. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 2013;114:64-72. DOI: 10.1016/j.seppur.2013.04.030.10.1016/j.seppur.2013.04.030Search in Google Scholar

[76] Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Mol Biomol Spectrosc. 2007;67:1003-1006. DOI: 10.1016/j.saa.2006.09.028.10.1016/j.saa.2006.09.02817084659Search in Google Scholar

[77] Shin KH, Cha DK. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere. 2008;72(2):257-262. DOI: 10.1016/j.chemosphere.2008.01.043.10.1016/j.chemosphere.2008.01.04318331753Search in Google Scholar

[78] Shan GB, Xing JM, Zhang HY, Liu HZ. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol. 2005;71:4497-4502. DOI: 10.1128/AEM.71.8.4497-4502.2005.10.1128/AEM.71.8.4497-4502.2005118326616085841Search in Google Scholar

[79] Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes; a review. Colloid Surf B: 2014;121:474-483. DOI: 10.1016/j.colsurfb.2014.05.027.10.1016/j.colsurfb.2014.05.02725001188Search in Google Scholar

[80] Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol. 2007;41(14):5137-5142. DOI: 10.1021/es062929a.10.1021/es062929a251897717711235Search in Google Scholar

[81] Beattie IR, Haverkamp RG. Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics. 2011;3:628-632. DOI: 10.1039/c1mt00044f.10.1039/c1mt00044f21611658Search in Google Scholar

[82] Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K, et al. Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomed. 2011;6:2899-2906. DOI: 10.2147/IJN.S24785.10.2147/IJN.S24785323056122162651Search in Google Scholar

[83] Liu R, Zhao D. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 2007;41(12):2491-2502. DOI: 10.1016/j.watres.2007.03.026.10.1016/j.watres.2007.03.02617482234Search in Google Scholar

[84] Cameotra SS, Dhanjal S. Environmental nanotechnology: nanoparticles for bioremediation of toxic pollutants. Bioremed Technol. 2010;348-374. DOI: 10.1007/978-90-481-3678-0_13.10.1007/978-90-481-3678-0_13Search in Google Scholar

[85] Baek KH, Yoon BD, Cho DH, Kim BH, Oh HM, Kim HS. Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil contaminated soil. J Microbiol Biotechnol. 2009;19:339-345. DOI: 10.4014/jmb.0807.423.10.4014/jmb.0807.42319420987Search in Google Scholar

[86] Jerez CA. Biomining microorganisms: molecular aspects and applications in biotechnology and bioremediation. In: Advances in Applied Bioremediation. Berlin: Springer; 2009:239-256. DOI: 10.1007/978-3-540-89621-0_13.10.1007/978-3-540-89621-0_13Search in Google Scholar

[87] Paliwal V, Chande S, Purohit H. Integrated perspective for effective bioremediation. Appl Biochem Biotechnol. 2012:166:903-924. DOI 10.1007/s12010-011-9479-5.10.1007/s12010-011-9479-5Search in Google Scholar

[88] Peijnenburg WJGM, Zablotskaja M, Vijver MG. Monitoring metals in terrestrial environments within a bioavailability framework and focus on soil extraction. Ecotoxicol Environ Safety. 2007;67(2):163-179. DOI: 10.1016/j.ecoenv.2007.02.008.10.1016/j.ecoenv.2007.02.008Search in Google Scholar

[89] Quevauviller P, editor. Methodologies for Soil and Sediment Fractionation Studies. Brussels, Belgium: Royal Society of Chemistry; 2002. DOI: 10.1039/9781847551412.10.1039/9781847551412Search in Google Scholar

[90] Seleznev AA, Yarmoshenko IV. Study of urban puddle sediments for understanding heavy metal pollution in an urban environment. Environ Technol Innov. 2014;1-2:1-7. DOI: 10.1016/j.eti.2014.08.001.10.1016/j.eti.2014.08.001Search in Google Scholar

[91] Mishra V, Lal R, Srinivasan S. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol. 2001;27:133-166. DOI: 10.1080/20014091096729.10.1080/20014091096729Search in Google Scholar

[92] Sar P, Kazy SK, Singh SP. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Lett Appl Microbiol. 2001;32(4):257-261. DOI: 10.1046/j.1472-765X.2001.00878.x.10.1046/j.1472-765X.2001.00878.xSearch in Google Scholar

[93] Gupta VVSR, Dick RP, Coleman DC. Functional microbial ecology: Molecular approaches to microbial ecology and microbial habitats. Soil Biol Biochem. 2008;40:1269-1271. DOI: 10.1016/S0038-0717(08)00044-8.10.1016/S0038-0717(08)00044-8Search in Google Scholar

[94] Naranjo L, Urbinaa H, De Sistoa A, Leona V. Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransform. 2007;25:341-349. DOI: 10.1080/10242420701379908.10.1080/10242420701379908255618618833334Search in Google Scholar

[95] Nielsen MN, Winding A. Microorganisms as indicators of soil heath. NERI Technical Report No. 388, Ministry of the Environment. National Environmental Research Institute. Denmark 2002. http://www.dmu.dk/1_viden/2_publikationer/3_fagrapporter/rapporter/FR388.pdf.Search in Google Scholar

[96] Steliga T, Jakubowicz P, Kapusta P. Optimisation research of petroleum hydrocarbons biodegradation in weathered drilling wastes from waste pits. Waste Manage Res. 2010;28(12):1065-1075. DOI: 10.1177/0734242X09351906.10.1177/0734242X0935190620022901Search in Google Scholar

[97] Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J, Lehtokaris M. A battery of toxicity tests as indicators of decont amination in composting oily waste. Ecotoxicol Environ Saf. 2000;47:156-166.10.1006/eesa.2000.194311023694Search in Google Scholar

[98] Steliga T, Jakubowicz P, Kapusta P. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Biores Technol. 2012;125:1-10. DOI: 10.1016/j.biortech.2012.08.092.10.1016/j.biortech.2012.08.09223018157Search in Google Scholar

[99] Xu L, Teng Y, Li ZG, Norton JM, Luo YM. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculums. Sci Total Environ. 2010;408:1007-1013. DOI: 10.1016/j.scitotenv.2009.11.031.10.1016/j.scitotenv.2009.11.03119995667Search in Google Scholar

[100] Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, et al. Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremed. 2010;12:516-533. DOI: 10.1080/15226510903353120.10.1080/1522651090335312021166292Search in Google Scholar

eISSN:
1898-6196
Language:
English