Cite

[1] Fisher T, Veste M, Schaaf W, Dumüg A, Kögel-Knabner I, Wiehe W, et al. Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry. 2010;101:165-176. DOI: 10.1007/s10533-010-9464-z.10.1007/s10533-010-9464-zSearch in Google Scholar

[2] Lukešová A. Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restor Ecol. 2001;9:341-350. DOI: 10.1046/j.1526-100X.2001.94002.x.10.1046/j.1526-100X.2001.94002.xSearch in Google Scholar

[3] Evans RD, Lange OL. Biological soil crusts and ecosystem nitrogen and carbon dynamics. Ecol Stud. 2003;150:263-279. DOI: 10.1007/978-3-642-56475-8_20.10.1007/978-3-642-56475-8_20Search in Google Scholar

[4] Belnap J. Factor influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol Stud. 2003;150:241-261. DOI: 10.1007/978-3-642-56475-8_19.10.1007/978-3-642-56475-8_19Search in Google Scholar

[5] Pluis JLA. Algal crust formation in the inland dune area. Laarder Wasmeer, the Netherlands. Vegetatio. 1994;113:41-51. DOI: 10.1007/BF00045462.10.1007/BF00045462Search in Google Scholar

[6] Rahmonov O, Piątek J. Sand colonization and initiation of soil development by cyanobacteria and algae. Ekológia (Bratislava). 2007;26(1):52-63. http://147.213.211.222/sites/default/files/Ekol_10705_rahmonov.pdf.Search in Google Scholar

[7] Malam Io, Le Bissonnais Y, Défarge C, Trichet J. Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma. 2001;101:15-30. DOI: 10.1016/S0016-7061(00)00093-8.10.1016/S0016-7061(00)00093-8Search in Google Scholar

[8] Chen R, Zhang Y, Li Y, Wie W, Zhang J, Wu N. The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China. Environ Geol. 2009;57:1135-1143. DOI: 10.1007/s00254-008-1410-1.10.1007/s00254-008-1410-1Search in Google Scholar

[9] Johansen JR, Shubert LE. Algae in soil. Nova Hedwigia, Beih. 2001;123:297-306.Search in Google Scholar

[10] Starks TL, Shubert LE. Colonization and succession of algae and soil algae interactions associated with disturbed areas. J Phycol. 1982;18:99-107. DOI: 10.1111/j.1529-8817.1982.tb03162.x.10.1111/j.1529-8817.1982.tb03162.xSearch in Google Scholar

[11] Belnap J, Büdel B, Lange OL. Biological soil crust: characteristics and distribution. Ecol Stud. 2003;150:3-30. DOI: 10.1007/978-3-642-56475-8_1.10.1007/978-3-642-56475-8_1Search in Google Scholar

[12] Picińska-Fałtynowicz J. Algae. In: Piotrowska H, editor. The Nature of Słowiński National Park. Poznań-Gdańsk: Bogucki Science Press; 1997.Search in Google Scholar

[13] Kalinowska R, Trzcińska M, Pawlik-Skowrońska B. Glony glebowe terenów pogórniczych skażonych metalami ciężkimi (Soil alga in post-mining areas contaminated with heavy metals). Wiadomości Botaniczne. 2008;52(3/4):63-79.Search in Google Scholar

[14] Kalinowska R, Pawlik-Skowrońska B. Metal resistance of soil algae (Chlorophyta) occurring in post flotation Zn/Pb- and Cu-tailing ponds. Pol J Ecol. 2008;56(3):415-430.Search in Google Scholar

[15] Trzcińska M, Pawlik-Skowrońska B. Soil algal communities inhabiting zinc and lead mine spoils. J Appl Phycol. 2008;20:341-348. DOI: 10.1007/s10811-007-9259-3.10.1007/s10811-007-9259-3Search in Google Scholar

[16] Rahmonov O, Kowalski WJ, Bednarek R. Characterization of the soil organic matter and plant tissues in an initial stage of plant succession and soil development by means of Curie-point pyrolysis coupled with GC-MS. Eurasian Soil Sci. 2010;43(13):1557-1568. DOI: 10.1134/S1064229310130144.10.1134/S1064229310130144Search in Google Scholar

[17] Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland; 2013. http://www.algaebase.org.Search in Google Scholar

[18] Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y. Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J. 2002;66:129-141. DOI: 10.2136/sssaj2002.1290.10.2136/sssaj2002.1290Search in Google Scholar

[19] Nierop KGJ, Van Lagen B, Buurman P. Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma. 2001;100:1-24. DOI: 10.1016/S0016-7061(00)00078-1.10.1016/S0016-7061(00)00078-1Search in Google Scholar

[20] Lechowski Z, Białczak J. Rola i znaczenie polisacharydów sinic w przyrodzie i biotechnologii (Role of cyanobacterial polysaccharides in environment and biotechnology). Wiadomości Botaniczne. 2001;45(3/4):35-51. http://bomax.botany.pl/pubs/data/article_pdf?id=2325.Search in Google Scholar

[21] Mazor G. Kidron GJ, Vonshak A, Abeliovich A. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol. 1996;21(2):121-130. DOI: 10.1016/0168-6496(96)00050-5.10.1111/j.1574-6941.1996.tb00339.xSearch in Google Scholar

[22] Dümig A, Veste M, Hagedorn F, Fischer T, Lange P, Spröte R, et al. Biological soil crusts on initial soils: organic carbon dynamics and chemistry under temperate climatic conditions. Biogeosci Discuss. 2013;10:851-894. DOI: 10.5194/bgd-10-851-2013.10.5194/bgd-10-851-2013Search in Google Scholar

[23] Eldridge DJ. Biological soil crusts and water relations in Australian Deserts. Ecological Studies. 2003;150:315-325. DOI: 10.1007/978-3-642-56475-8_23.10.1007/978-3-642-56475-8_23Search in Google Scholar

[24] Shtina EA. The peculiarities of algal flora in the anthropogenic soil (by the example of Valaam Island). Eurasian Soil Sci. 2000;33(8):847-849.Search in Google Scholar

[25] Page DW, Van Leeuwen AJ, Spark KM, Mulcahy DE. Pyrolysis characterization of plant, humus and soil extract from Australian catchments. J Anal Appl Pyrol. 2002;65:269-285. DOI: 10.1016/S0165-2370(02)00005-0.10.1016/S0165-2370(02)00005-0Search in Google Scholar

[26] Schulten HR, Schnitzer M. The chemistry of soil organic nitrogen: a review. Biol Fert Soils. 1998;26:1-15. DOI: 10.1007/s003740050335.10.1007/s003740050335Search in Google Scholar

[27] Rahmonov O, Gajos M, Czuban R, Parusel T. GIS methods in monitoring succession processes in limestone and dolomite quarries. Pol J Environ Stud. 2014;23(2):647-653. http://www.researchgate.net/publication/261850855_GIS_Methods_in_Monitoring_Succession_Processes_in_Limestone_and_Dolomite_Quarries.Search in Google Scholar

eISSN:
1898-6196
Language:
English