Open Access

The Use Of Pb-210 Isotope As An Indicator Of Pollutants’ Migration In The Environment


Cite

[1] Dołhańczuk-Śródka A, Ziembik Z, Kusza G. Wykorzystanie metod statystycznych do opisu migracji izotopów promieniotwórczych w środowisku przyrodniczym. (The use of statistical methods to describe the migration of radionuclides in the environment). Warszawa: WNT; 2015.Search in Google Scholar

[2] Kubica B, Szarlowicz K, Stobinski M, Skiba S, Reczynski W, Gołas J. Concentrations of 137Cs and 40K radionuclides and some heavy metals in soil samples from the eastern part of the Main Ridge of the Flysch Carpathians. J Radioanal Nucl Chem. 2014;299(3):1313-1320. DOI: 10.1007/s10967-013-2890-3.10.1007/s10967-013-2890-3451458726224960Search in Google Scholar

[3] Szabó KZ, Udvardi B, Horváth Á, Bakacsi Z, Pásztor L, Szabó J, et al. Cesium-137 concentration of soils in Pest County, Hungary. J Environ Radioact. 2012;110:38-45. DOI: 10.1016/j.jenvrad.2012.01.023.10.1016/j.jenvrad.2012.01.02322343500Search in Google Scholar

[4] Dołhańczuk-Śródka A, Majcherczyk T, Smuda M, Ziembik Z, Wacławek M. Spatial 137Cs distribution in forest soil. Nukleonika. 2006;51(2):S69-S79. http://www.ichtj.waw.pl/ichtj/nukleon/back/full/vol51_2006/v51s2p69f.pdf.Search in Google Scholar

[5] Kubica B, Skiba S, Drewnik M, Stobiński M, Kubica M, Golas J, et al. Radionuclides Cs-137 and K-40 in the soils of the Tatra National Park (TPN, Poland). Nukleonika. 2010;55(3):377-386. http://www.nukleonika.pl/www/back/full/vol55_2010/v55n3p377f.pdf,Search in Google Scholar

[6] Payne T., Hatje V, Itakura T, McOrist G, Russell R. Radionuclide applications in laboratory studies of environmental surface reactions. J Environ Radioact. 2004;76(1-2):237-251. DOI: 10.1016/j.jenvrad.2004.03.029.10.1016/j.jenvrad.2004.03.02915245851Search in Google Scholar

[7] Lecroart P, Maire O, Schmidt S, Grémare A, Abrahams PW, Meysman FJR. Bioturbation, short-lived radioisotopes, and the tracer-dependence of biodiffusion coefficients. Geochim Cosmochim Acta. 2010;74(21):6049-6063. DOI: 10.1016/j.gca.2010.06.010.10.1016/j.gca.2010.06.010Search in Google Scholar

[8] Medich DC, Abayomi K, Boudreau BP, Meysman FJR. Steady-state tracer dynamics in a lattice-automaton model of bioturbation. Geochim Cosmochim Acta. 2006;70(23):5855-5867. DOI: 10.1016/j.gca.2006.03.026.10.1016/j.gca.2006.03.026Search in Google Scholar

[9] Johannessen SC, Macdonald RW. There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores. Mar Pollut Bull. 2012;64(4):675-678. DOI: 10.1016/j.marpolbul.2012.01.026.10.1016/j.marpolbul.2012.01.02622336092Search in Google Scholar

[10] Xue B, Yao S. Recent sedimentation rates in lakes in lower Yangtze River basin. Quat Int. 2011;244(2):248-253. DOI: 10.1016/j.quaint.2011.01.003.10.1016/j.quaint.2011.01.003Search in Google Scholar

[11] Xu L, Wu F, Wan G, Liao H, Zhao X, Xing B. Relationship between 210Pbex activity and sedimentary organic carbon in sediments of 3 Chinese lakes. Environ Pollut. 2011;159(12):3462-3467. DOI: 10.1016/j.envpol.2011.08.020.10.1016/j.envpol.2011.08.02021889244Search in Google Scholar

[12] Barlas Simsek F, Cagatay MN. Geochronology of lake sediments using 210Pb with double energetic window method by LSC: An application to Lake Van. Appl Radiat Isot. 2014;93:126-133. DOI: 10.1016/j.apradiso.2014.01.028.10.1016/j.apradiso.2014.01.02824593926Search in Google Scholar

[13] Szarlowicz K, Kubica B. 137Cs and 210Pb radionuclides in open and closed water ecosystems. J Radioanal Nucl Chem. 2014;299(3):1321-1328. DOI: 10.1007/s10967-013-2864-5.10.1007/s10967-013-2864-5Search in Google Scholar

[14] Szarłowicz K, Reczyński W, Golas J, Kościelniak P, Skiba M, Kubica B. Sorption of Cs-137 and Pb on sediment samples from a drinking water reservoir. Pol J Environ Stud. 2011;20(5):1305-1312. http://www.pjoes.com/pdf/20.5/Pol.J.Environ.Stud.Vol.20.No.5.1305-1312.pdf.Search in Google Scholar

[15] Gäggeler H, Gunter HR, Rössler E, Oeschger H, Schotterrer U. 210Pb - dating of cold Alpine firn/ice cores from Colle Gnifetti, Switzerland. J Glaciol. 1983;29:165-177. http://www.igsoc.org:8080/journal/29/101/igs_journal_vol29_issue101_pg165-177.pdf.10.3189/S0022143000005220Search in Google Scholar

[16] von Gunten HR, Moser RN. How reliable is the 210Pb dating method? Old and new results from Switzerland. J Paleolimnol. 1993;9(2):161-178. DOI: 10.1007/BF00677518.10.1007/BF00677518Search in Google Scholar

[17] Walling DE, He Q. Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. CATENA. 1997;29(3-4):263-282. DOI: 10.1016/S0341-8162(96)00072-0.10.1016/S0341-8162(96)00072-0Search in Google Scholar

[18] Walling D., He Q. The spatial variability of overbank sedimentation on river floodplains. Geomorphology. 1998;24(2-3):209-23. DOI: 10.1016/S0169-555X(98)00017-8.10.1016/S0169-555X(98)00017-8Search in Google Scholar

[19] Zhang X, Walling DE. Characterizing land surface erosion from cesium-137 profiles in lake and reservoir sediments. J Environ Qual. 2005;34(2):514-523. DOI: 10.2134/jeq2005.0514.10.2134/jeq2005.051415758104Search in Google Scholar

[20] Ueda S, Ohtsuka Y, Kondo K, Hisamatsu S. Inventories of 239+240Pu, 137Cs, and excess 210Pb in sediments from freshwater and brackish lakes in Rokkasho, Japan, adjacent to a spent nuclear fuel reprocessing plant. J Environ Radioact. 2009;100(10):835-840. DOI: 10.1016/j.jenvrad.2009.06.008.10.1016/j.jenvrad.2009.06.00819586693Search in Google Scholar

[21] An J, Zheng F, Wang B. Using 137Cs technique to investigate the spatial distribution of erosion and deposition regimes for a small catchment in the black soil region, Northeast China. CATENA. 2014;123:243-251. DOI: 10.1016/j.catena.2014.08.009.10.1016/j.catena.2014.08.009Search in Google Scholar

[22] Zhang X, Long Y, He X, Fu J, Zhang Y. A simplified 137Cs transport model for estimating erosion rates in undisturbed soil. J Environ Radioact. 2008;99(8):1242-1246. DOI: 10.1016/j.jenvrad.2008.03.001.10.1016/j.jenvrad.2008.03.00118433951Search in Google Scholar

[23] Zhang CL, Yang S, Pan XH, Zhang JQ. Estimation of farmland soil wind erosion using RTK GPS measurements and the 137Cs technique: A case study in Kangbao County, Hebei province, northern China. Soil Tillage Res. 2011;112(2):140-148. DOI: 10.1016/j.still.2010.12.003.10.1016/j.still.2010.12.003Search in Google Scholar

[24] Benmansour M, Mabit L, Nouira A, Moussadek R, Bouksirate H, Duchemin M, et al. Assessment of soil erosion and deposition rates in a Moroccan agricultural field using fallout 137Cs and 210Pbex. J Environ Radioact. 2013;115:97-106. DOI: 10.1016/j.jenvrad.2012.07.013.10.1016/j.jenvrad.2012.07.01322898495Search in Google Scholar

[25] Kirchner G. Establishing reference inventories of 137Cs for soil erosion studies: Methodological aspects. Geoderma. 2013;211-212:107-115. DOI: 10.1016/j.geoderma.2013.07.01110.1016/j.geoderma.2013.07.011Search in Google Scholar

[26] Menéndez-Duarte R, Fernández S, Soto J. The application of 137Cs to post-fire erosion in north-west Spain. Geoderma. 2009;150(1-2):54-63. DOI: 10.1016/j.geoderma.2009.01.012.10.1016/j.geoderma.2009.01.012Search in Google Scholar

[27] Ritchie JC, McHenry JR. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J Environ Qual. 1990;19(2):215. DOI: 10.2134/jeq1990.00472425001900020006x.10.2134/jeq1990.00472425001900020006xSearch in Google Scholar

[28] Porȩba GJ, Bluszcz A. Influence of the parameters of models used to calculate soil erosion based on 137Cs tracer. Geochronometria. 2009;32(1):21-27. http://www.geochronometria.pl/pdf/geo_32/Geo32_03.pdf.10.2478/v10003-008-0026-5Search in Google Scholar

[29] Kelly RP, Moran SB. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnol Oceanogr. 2002;47(6):1796-1807. http://aslo.info/lo/toc/vol_47/issue_6/1796.pdf.10.4319/lo.2002.47.6.1796Search in Google Scholar

[30] Patrut A, von Reden KF, Van Pelt R, Mayne DH, Lowy DA, Margineanu D. Age determination of large live trees with inner cavities: radiocarbon dating of Platland tree, a giant African baobab. Ann For Sci. 2011;68(5):993-1003. DOI: 10.1007/s13595-011-0107-x.10.1007/s13595-011-0107-xSearch in Google Scholar

[31] Kolář T, Rybníček M. Dendrochronological and radiocarbon dating of subfossil wood from the Morava River basin. Geochronometria. 2011;38(2):155-161. DOI: 10.2478/s13386-011-0021-x.10.2478/s13386-011-0021-xSearch in Google Scholar

[32] Zazzo A, Saliège JF. Radiocarbon dating of biological apatites: A review. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;310(1-2):52-61. DOI: 10.1016/j.palaeo.2010.12.004.10.1016/j.palaeo.2010.12.004Search in Google Scholar

[33] Terry M, Steelman KL, Guilderson T, Dering P, Rowe MW. Lower Pecos and Coahuila peyote: new radiocarbon dates. J Archaeol Sci. 2006;33(7):1017-1021. DOI: 10.1016/j.jas.2005.11.008.10.1016/j.jas.2005.11.008Search in Google Scholar

[34] Richter D, Tostevin G, Škrdla P, Davies W. New radiometric ages for the Early Upper Palaeolithic type locality of Brno-Bohunice (Czech Republic): comparison of OSL, IRSL, TL and 14C dating results. J Archaeol Sci. 2009;36(3):708-720. DOI: 10.1016/j.jas.2008.10.017.10.1016/j.jas.2008.10.017Search in Google Scholar

[35] Jöris O, Street M. At the end of the 14C time scale-the Middle to Upper Paleolithic record of western Eurasia. J Hum Evol. 2008;55(5):782-802. DOI: 10.1016/j.jhevol.2008.04.002.10.1016/j.jhevol.2008.04.00218930513Search in Google Scholar

[36] Boaretto E, Poduska KM. Materials science challenges in radiocarbon dating: the case of archaeological plasters. JOM. 2013;65(4):481-488. DOI: 10.1007/s11837-013-0573-8.10.1007/s11837-013-0573-8Search in Google Scholar

[37] Clauer N. The K-Ar and 40Ar/39Ar methods revisited for dating fine-grained K-bearing clay minerals. Chem Geol. 2013;354:163-185. DOI: 10.1016/j.chemgeo.2013.05.030.10.1016/j.chemgeo.2013.05.030Search in Google Scholar

[38] Piñero García F, Ferro García MA, Azahra M. 7Be behaviour in the atmosphere of the city of Granada January 2005 to December 2009. Atmos Environ. 2012;47:84-91. DOI: 10.1016/j.atmosenv.2011.11.034.10.1016/j.atmosenv.2011.11.034Search in Google Scholar

[39] Dueñas C, Fernández MC, Cañete S, Pérez M. 7Be to 210Pb concentration ratio in ground level air in Málaga (36.7°N, 4.5°W). Atmospheric Res. 2009;92(1):49-57. DOI: 10.1016/j.atmosres.2008.08.012.10.1016/j.atmosres.2008.08.012Search in Google Scholar

[40] Yoshimori M. Beryllium 7 radionucleide as a tracer of vertical air mass transport in the troposphere. Adv Space Res. 2005;36(5):828-832. DOI: 10.1016/j.asr.2005.04.088.10.1016/j.asr.2005.04.088Search in Google Scholar

[41] Pacini AA, Usoskin IG, Evangelista H, Echer E, de Paula R. Cosmogenic isotope 7Be: A case study of depositional processes in Rio de Janeiro in 2008-2009. Adv Space Res. 2011;48(5):811-818. DOI: 10.1016/j.asr.2011.04.035.10.1016/j.asr.2011.04.035Search in Google Scholar

[42] Leppänen A-P, Pacini AA, Usoskin IG, Aldahan A, Echer E, Evangelista H, et al. Cosmogenic 7Be in air: A complex mixture of production and transport. J Atmospheric Sol-Terr Phys. 2010;72(13):1036-1043. DOI: 10.1016/j.jastp.2010.06.006.10.1016/j.jastp.2010.06.006Search in Google Scholar

[43] Lozano RL, Hernández-Ceballos MA, Rodrigo JF, San Miguel EG, Casas-Ruiz M, García-Tenorio R, et al. Mesoscale behavior of 7Be and 210Pb in superficial air along the Gulf of Cadiz (south of Iberian Peninsula). Atmos Environ. 2013;80:75-84. DOI: 10.1016/j.atmosenv.2013.07.050.10.1016/j.atmosenv.2013.07.050Search in Google Scholar

[44] Baskaran M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review. J Environ Radioact. 2011;102(5):500-513. DOI: 10.1016/j.jenvrad.2010.10.007.10.1016/j.jenvrad.2010.10.00721093126Search in Google Scholar

[45] Dueñas C, Fernández MC, Carretero J, Liger E, Cañete S. Deposition velocities and washout ratios on a coastal site (southeastern Spain) calculated from 7Be and 210Pb measurements. Atmos Environ. 2005;39(36):6897-6908. DOI: 10.1016/j.atmosenv.2005.08.008.10.1016/j.atmosenv.2005.08.008Search in Google Scholar

[46] Papastefanou C. Residence time of tropospheric aerosols in association with radioactive nuclides. Appl Radiat Isot. 2006;64(1):93-100. DOI: 10.1016/j.apradiso.2005.07.006.10.1016/j.apradiso.2005.07.00616122930Search in Google Scholar

[47] Almgren S, Isaksson M. Vertical migration studies of 137cs from nuclear weapons fallout and the Chernobyl accident. J Environ Radioact. 2006;91(1-2):90-102. DOI: 10.1016/j.jenvrad.2006.08.008.10.1016/j.jenvrad.2006.08.00817030348Search in Google Scholar

[48] Hiroaki K, Onda Y, Teramage M. Depth Distribution of 137Cs, 134Cs, and 131I in soil profile after Fukushima Dai-Ichi Nuclear Power Plant accident. J Environ Radioact. 2012;111:59-64. DOI: 10.1016/j.jenvrad.2011.10.003.10.1016/j.jenvrad.2011.10.00322029969Search in Google Scholar

[49] BNL. National Nuclear Data Center. 2014. http://www.nndc.bnl.gov/.Search in Google Scholar

[50] Aitchison J. The Statistical Analysis of Compositional Data. Caldwell, New Yersey: The Blackburn Press, 2003.Search in Google Scholar

[51] Pawlowsky-Glahn V, Buccianti A. Compositional Data Analysis. Theory and Applications. United Kingdom: John Wiley & Sons, Ltd. 2011.10.1002/9781119976462Search in Google Scholar

[52] Aitchison J, Greenacre M. Biplots of Compositional Data. J R Stat Soc: Series C (Appl Stat). 2002;51(4):375-92. DOI: 10.1111/1467-9876.00275.10.1111/1467-9876.00275Search in Google Scholar

[53] Filzmoser P, Hron K, Reimann C. Principal component analysis for compositional data with outliers. Environmetrics. 2009;20(6):621-632. DOI: 10.1002/env.966.10.1002/env.966Search in Google Scholar

[54] Dołhańczuk-Śródka A, Ziembik Z, Kříž J, Hyšplerova L, Wacławek M. Pb-210 Isotope as a pollutant emission indicator. Ecol Chem Eng S. 2015;22(1):73-81. DOI: 10.1515/eces-2015-0004.10.1515/eces-2015-0004Search in Google Scholar

eISSN:
1898-6196
Language:
English