Open Access

Concentration Changes Of PM10 Under Liquid Precipitation Conditions


Cite

[1] Connan O, Maro D, Hebert D, Roubsard P, Goujon R, Lettelier B et al. Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmos Environ. 2013;67:394-403. DOI: 10.1016/j.atmosenv.2012.11.029.10.1016/j.atmosenv.2012.11.029Search in Google Scholar

[2] Santachiara G, Prodi F, Belosi F. Atmospheric aerosol scavenging processes and the role of thermo- and diffusio-phoretic forces. Atmos Res. 2013;128:46-56. DOI: 10.1016/j.atmosres.2013.03.004.10.1016/j.atmosres.2013.03.004Search in Google Scholar

[3] Goncalves FF, Massambani O, Beheng KD, Vautz SW, Solci MC, Rocha V, et al. Modelling and measurements of below cloud scavenging processes in the highly industrialised region of Cubatao-Brazil. Atmos Environ. 2000;34:4113-4120. PII: S 1352-2310 (99) 00503-8.10.1016/S1352-2310(99)00503-8Search in Google Scholar

[4] Chate DM, Rao P, Naik M, Momin G, Safai P, Ali K. Scavenging of aerosols and their chemical species by rain. Atmos Environ. 2003;37:2477-2484. DOI: 10.1016/S1352-2310(03)00162-6.10.1016/S1352-2310(03)00162-6Search in Google Scholar

[5] Bae SY, Jung CH, Kim YP. Development and evaluation of an expression for polydisperse particle scavenging coefficient for the below-cloud scavenging as a function of rain intensity using the moment method. Aerosol Sci. 2006;37:1507-1519. DOI: 10.1016/j.jaerosci.2006.02.003.10.1016/j.jaerosci.2006.02.003Search in Google Scholar

[6] Kim J-E, Han Y-J, Kim P-R, Holsen TM. Factors influencing atmospheric wet deposition of trace elements in rural Korea. Atmos Res. 2012;116:185-194. DOI: 10.1016/j.atmosres.2012.04.013.10.1016/j.atmosres.2012.04.013Search in Google Scholar

[7] Zhao H, Zheng C. Monte Carlo solution of wet removal of aerosols by precipitation. Atmos Environ. 2006;40:1510-1525. DOI: 10.1016/j.atmosenv.2005.10.043.10.1016/j.atmosenv.2005.10.043Search in Google Scholar

[8] Chate DM, Murugavel P, Ali K, Tiwari S, Beig G. Below-cloud rain scavenging of atmospheric aerosols for aerosol deposition models. Atmos Res. 2011;99:528-536. DOI: 10.1016/j.atmosres.2010.12.010.10.1016/j.atmosres.2010.12.010Search in Google Scholar

[9] Feng J. 3-mode parameterization of below-cloud scavenging of aerosols for use in atmospheric dispersion models. Atmos Environ. 2007;41:6808-6822. DOI: 10.1016/j.atmosenv.2007.04.046.10.1016/j.atmosenv.2007.04.046Search in Google Scholar

[10] Wang PK, Pruppacher HR. On the efficiency with which aerosol particles of radius less than 1 μm are collected by columnar ice crystals. Pure Appl Geophys. 1980;118:1090-1108.10.1007/BF01593052Search in Google Scholar

[11] Pruppacher HR, Klett JD. Microphysics of Clouds and Precipitation. Second edition. Norwell, Massachusetts: Kluwer Academic; 1997.Search in Google Scholar

[12] Bae SY, Jung CH, Kim YP. Relative contributions of individual phoretic effect in the below-cloud scavenging process. Aerosol Sci. 2009;40:621-632. DOI: 10.1016/j.jaerosci.2009.03.003.10.1016/j.jaerosci.2009.03.003Search in Google Scholar

[13] Andronache C. Diffusion and electric charge contributions to below-cloud wet removal of atmospheric ultra-fine aerosol particles. Aerosol Sci. 2004;35:1467-1482. DOI: 10.1016/j.jaerosci.2004.07.005.10.1016/j.jaerosci.2004.07.005Search in Google Scholar

[14] Tinsley BA, Rohrbaugh RP, Hei M. Electroscavenging in clouds with broad droplet size distributions and weak electrification. Atmos Res. 2001;59-60:115-135. PII: S0169-8095(01)00112-0.10.1016/S0169-8095(01)00112-0Search in Google Scholar

[15] Chate DM. Study of scavenging of submicron-sized aerosol particles by thunderstorm rain events. Atmos Environ. 2005;39:6608-6619. DOI: 10.1016/j.atmosenv.2005.07.063.10.1016/j.atmosenv.2005.07.063Search in Google Scholar

[16] Radke LF, Hobbs PV, Eltgroth MW. Scavenging of aerosol particles by precipitation. J Appl Meteorol. 1980;19:715-722.10.1175/1520-0450(1980)019<0715:SOAPBP>2.0.CO;2Search in Google Scholar

[17] ENVIRON. User’s guide comprehensive ai rquality mode lwith extensions (CAMx) version 4.50. Novato, USA: Environ International Corporation, 2008.Search in Google Scholar

[18] SAI. User’s guide to the regional modeling system for aerosols and deposition (REMSAD) version 8. San Rafael, California, USA: Systems Applications International; 2005.Search in Google Scholar

[19] Andronache C, Gronholm T, Laakso L, Phillips V, Venalainen A. Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations. Atmos Chem Phys. 2006;6:4739-4754. DOI: 10.5194/acp-6-4739-2006.10.5194/acp-6-4739-2006Search in Google Scholar

[20] Bae SY, Jung CH, Kim YP. Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment 41 (2010). J Aerosol Sci. 2010;41:266-280. DOI: 10.1016/j.jaerosci.2009.11.006.10.1016/j.jaerosci.2009.11.006Search in Google Scholar

[21] Mircea M, Stefan S, Fuzzi S. Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions. Atmos Environ. 2000;34:5169-5174. DOI: 10.1016/S1352-2310(00)00199-0.10.1016/S1352-2310(00)00199-0Search in Google Scholar

[22] Andronache C. Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos Chem Phys. 2003;3:131-143. www.atmos-chem-phys.org/acp/3/131/.10.5194/acp-3-131-2003Search in Google Scholar

[23] Jung CH, Kim YP, Lee KW. A moment model for simulating raindrop scavenging of particles. J Aerosol Sci. 2003;34:1217-1233. DOI: 10.1016/S0021-8502(03)00098-3.10.1016/S0021-8502(03)00098-3Search in Google Scholar

[24] Loosmore GA, Cederwall RT. Precipitation scavenging of atmospheric aerosols for emergency response applications: testing an updated model with new real-time data. Atmos Environ. 2004;38:993-1003. DOI: 10.1016/j.atmosenv.2003.10.055.10.1016/j.atmosenv.2003.10.055Search in Google Scholar

[25] Zhang L, Michelangeli DV, Taylor PA. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos Environ. 2004;38:4653-4665. DOI: 10.1016/j.atmosenv.2004.05.042.10.1016/j.atmosenv.2004.05.042Search in Google Scholar

[26] Shukla JB, Sundar S, Misra AK, Naresh, R. Modelling the removal of gaseous pollutants and particulate matters from the atmosphere of a city by rain: Effect of cloud. Environ Model Assess. 2008;13:255-263. DOI: 10.1007/s10666-007-9085-7.10.1007/s10666-007-9085-7Search in Google Scholar

[27] Laakso L, Gronholm T, Rannik U, Kosmale M, Fiedler V, Vehkamaki H, et al. Ultrafine particle scavenging coefficients calculated from 6 years field measurements. Atmos Environ. 2003;37:3605-3613. DOI: 10.1016/S1352-2310(03)00326-1.10.1016/S1352-2310(03)00326-1Search in Google Scholar

[28] Tai APK, Mickley LJ, Jacob DJ. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos Environ. 2010;44:3976-3984. DOI: 10.1016/j.atmosenv.2010.06.060.10.1016/j.atmosenv.2010.06.060Search in Google Scholar

[29] Davenport HM, Peter LK. Field studies of atmospheric particulates concentration changes during precipitation. Atmos Environ. 1978;12:997-1008.10.1016/0004-6981(78)90344-XSearch in Google Scholar

[30] Schumann T. Large discrepancies between theoretical and field-determined scavenging coefficients. J Aerosol Sci. 1989;20:1159-1162.10.1016/0021-8502(89)90786-6Search in Google Scholar

[31] Maria SS, Russell LM. Organic and inorganic aerosol below-cloud scavenging by suburban New Jersey precipitation. Environ Sci Tech. 2005;39(13):4793-4800. DOI: 10.1021/es0491679.10.1021/es0491679Search in Google Scholar

[32] Jylha K. Assessing precipitation scavenging of air pollutants by using weather radar. Phys Chem Earth PT B. 2000;25:1085-1089. PII-S1464-1909(00)00157-X.10.1016/S1464-1909(00)00157-XSearch in Google Scholar

[33] Chate DM, Pranesha TS. Field studies of scavenging of aerosols by rain events. Aerosol Sci. 2004;35:695-706. DOI: 10.1016/j.jaerosci.2003.09.007.10.1016/j.jaerosci.2003.09.007Search in Google Scholar

[34] Zhang X, Huang Y, Rao R. Aerosol characteristics including fumigation effect under weak precipitation over the southeastern coast of China. J Atmos Sol-Terr Phys. 2012;84-85:25-36. DOI: 10.1016/j.jastp.2012.05.005.10.1016/j.jastp.2012.05.005Search in Google Scholar

[35] Castro A, Alonso-Blanco E, González-Colino M, Calvo A, Fernández-Raga M, Fraile R. Aerosol size distribution in precipitation events in León, Spain. Atmos Res. 2010;96:421-435. DOI: 10.1016/j.atmosres.2010.01.014.10.1016/j.atmosres.2010.01.014Search in Google Scholar

[36] 12341:1999, BS EN. Air quality. Determination of the PM10 fraction of suspended particulate matter. Reference method and field test procedure to demonstrate reference equivalence of measurement methods. 1999.Search in Google Scholar

[37] EC Working Group on Guidance for the Demonstration. Guide to the demonstration of equivalence of ambient air monitoring methods. Brussels: European Council Raports, 2000.Search in Google Scholar

[38] Sinkevich AA, Dovgalyuk YA, Ishenko MA, Ponomarev YF, Stepanenko VD, Veremei NE. Investigations of aerosol scavenging efficiency by precipitation. Nucleation and Atmospheric Aerosols. 15th Int Conf AIP Conf Pro 2000;1:534-538. http://adsabs.harvard.edu/abs/2000AIPC..534..538S.Search in Google Scholar

[39] Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: Wiley, 1998.Search in Google Scholar

[40] Hameed S, Sperber K. Estimates of the sulfate scavenging coefficient from sequential precipitation samples on Long Island. Tellus. 1986;388:11833-11839.Search in Google Scholar

[41] Paramonov M, Virkula A, Grönholm T, Göke S, Laakso L. Below-cloud scavenging of aerosol particles by snow at an urban site in Finland. Internati Aerosol Conf. Helsinki August 29-September, 2010, https://www.atm.helsinki.fi/FAAR/reportseries/rs-128.pdf.Search in Google Scholar

[42] Mircea M, Stefan SA. Theoretical study of the microphysical parameterization of the scavenging coefficient as a function of precipitation type and rate. Atmos Environ. 1998;32:2931-2938.10.1016/S1352-2310(98)00018-1Search in Google Scholar

[43] Kłos A, Rajfur M, Wacławek M, Wacławek W. Impact of roadway particulate matter on deposition of pollutants in the vicinity of main roads. Environ Protect Eng. 2009;3:77-84.Search in Google Scholar

[44] Olszowski T, Tomaszewska B, Góralna-Włodarczyk K. Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase. Atmos Environ. 2012;50:139-147. DOI: 10.1016/j.atmosenv.2011.12.049.10.1016/j.atmosenv.2011.12.049Search in Google Scholar

[45] Nicholson KW, Branson JR, Giess P. Field measurements of the below cloud scavenging of particulate material. Atmos Environ. 1991;25A:771-777.10.1016/0960-1686(91)90075-ISearch in Google Scholar

[46] Guilford JP. Psychometric Methods. New York: McGraw-Hill; 1954.Search in Google Scholar

[47] González CM, Aristizábal BH. Acid rain and particulate matter dynamics in a mid-sized Andean city: The effect of rain intensity on ion scavenging. Atmos Environ. 2012;60:164-171. DOI: 10.1016/j.atmosenv.2012.05.054.10.1016/j.atmosenv.2012.05.054Search in Google Scholar

eISSN:
1898-6196
Language:
English