Cite

[1] Bates JW. The effects of impacts on bryophytes and lichens. Air Pollution and Plant Life. 2004;2:345-384.Search in Google Scholar

[2] Tyler G. Bryophytes and heavy metals: a literature review. Bot Jourin Linnea Soc. 1990;104:231-253. DOI: 10.1111/j.1095-8339.1990.tb02220.x.10.1111/j.1095-8339.1990.tb02220.xSearch in Google Scholar

[3] Haugsjå PK. Über den Einfluß der Stadt Oslo auf die Flechten - vegetation der Bäume. Nyt Mag Naturvidensk. 1930;68:1-116.Search in Google Scholar

[4] Mickiewicz J, Dygna S. Outline of biology. Warszawa: NSP; 1973.Search in Google Scholar

[5] Gilbert OL. Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytol. 1970;78:605-627.10.1111/j.1469-8137.1970.tb07613.xSearch in Google Scholar

[6] Gillbert OL. A biological scale for the estimation of sulfur dioxide pollution. New Phytol. 1970;79:629-634.10.1111/j.1469-8137.1970.tb07614.xSearch in Google Scholar

[7] Hawksworth DL, Rose F. Lichens as pollution monitors. London: Arnold; 1976.Search in Google Scholar

[8] Rühling A, Tyler G. Heavy metal deposition in Scandinavia. Water Air Soil Pollut. 1973;2:445-455. DOI: 10.1007/BF00585089.10.1007/BF00585089Search in Google Scholar

[9] Rühling A, Tyler G. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis. Environ Pollut. 2004;131:417-423.10.1016/j.envpol.2004.03.005Search in Google Scholar

[10] Pakarinen P, Tolonen K. Regional survey of heavy metals in peat mosses. Ambio. 1976;5:38-40.Search in Google Scholar

[11] Pilegaard K. Heavy metals in bulk precipitation and transplanted Hypogymnia physodes and Dicranoweisia cirrata in the vicinity of a Danish steelworks. Water Air Soil Pollut. 1979;11:77-91. DOI: 10.1007/BF00163521.10.1007/BF00163521Search in Google Scholar

[12] Gydesen H, Pilegaard K, Rasmussen L, Ruhling A. Moss analyses used as a means of surveying the atmospheric heavy metal deposition in Sweden, Denmark and Greenland in 1980. Bulletin SNV PM. 1983;1670:1-44.Search in Google Scholar

[13] Rühling A, Rasmussen L, Pilegaard K, Makinen A, Steinnes E. Survez of atmospheric heavy metal deposition in the Nordic countries in 1985 monitored by moss analyses. Nord. 1987;21:1-44.Search in Google Scholar

[14] Rühling A, editor. Atmospheric heavy metal deposition in Europe-estimations based on moss analysis. Nord. 1994;9:9-53.Search in Google Scholar

[15] Grodzińska K. Mosses as a bioindicators of heavy metal pollution In Polish National Parks. Water Air Soil Pollut. 1978;9:83-97.10.1007/BF00185749Search in Google Scholar

[16] Grodzińska K. Contamination with heavy metals Polish national parks. Natural Protect. 1980;43:9-27.Search in Google Scholar

[17] Grodzińska K, Szarek G, Godzik B. Heavy metal deposition in Polish National Parks. Changes during ten years. Water Air Soil Pollut. 1990;49:409-419.10.1007/BF00507079Search in Google Scholar

[18] Grodzińska K, Szarek-Łukaszewska G, Godzik B. Survey of heavy metal deposition in Poland using mosses as indicators. Sci Total Environ. 1999;229:41-51. DOI: 10.1016/S0048-9697(99)00071-6.10.1016/S0048-9697(99)00071-6Search in Google Scholar

[19] Grodzińska K, Szarek-Łukawska G. Response of mosses to the heavy metal deposition in Poland -an overview. Environ Pollut. 2001;114(3/4):443-451.DOI: 10.1016/S0269-7491(00)00227-X.10.1016/S0269-7491(00)00227-XSearch in Google Scholar

[20] Makomaska M. Heavy metals contamination of pinewoods in the Niepołomice Forest (Southern Poland). Bull Acad Polon Sci Biol Cl. 1978;II,26:679-685, WOS:A1978GP04100005.Search in Google Scholar

[21] Grodzińska K, Kazimierczakowa R. Heavy metal content in the plants of Cracow parks. Bull Acad Pol Sci Cl. 1977;V,25(4):227-234.Search in Google Scholar

[22] Godzik B, Kiszka J. Concentration of heavy metals in thalluses of Hypogymnia physodes (L.) Nyl. in the Carna Wisełka and Biała Wisełka catchments. In: Wróbel S, editor. Environmantal degradation of the Czarna Wisełka and Biała Wisełka catchments, Western Carpathians. Studia Nature. 1998;44:73-80.Search in Google Scholar

[23] Godzik B, Szarek-Łukaszewska G. Plant bioindicators in the environmental monitoring. Ecol Chem Eng A. 2005;12(7):677-693.Search in Google Scholar

[24] Fabiszewski J, Brej T, Bielecki K. Plant reactions as indicators of air pollution in the vicinity of a copper smelter. Acta Soc Bot Pol. 1987;56(2):353-363.WOS:A1987K004000014.10.5586/asbp.1987.033Search in Google Scholar

[25] Cieśliński S, Jaworska E. Changes in the lichen flora of pine (Pinus silvestris L) under the influence of greenhouse plants cement and lime industry and mining. Act Mycol. 1986;2(1):3-14.Search in Google Scholar

[26] Bystrek J. Epiphytic flora and its disappearance under the influence of air pollution. Zones of environmental pollution in the province Chelm on the basis of licheno- and bioindicative. MC-S University. 1988;43:185-213.Search in Google Scholar

[27] Seaward MRD, Heslop JA, Green D, Bylińska EA. Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134 Cs and 137 Cs. J Environ Radioactiv. 1988;7:123-129.10.1016/0265-931X(88)90003-3Search in Google Scholar

[28] Kiszka J, Piórecki J. Lichenoindication research in Przemyśl region. J Przemyśl. 1990;19:281-290.Search in Google Scholar

[29] Czarnota P. The content of micro-and macroelements in Hypogymnia physodes thalli in Gorce National Park - Lichenoindication test. National Parks and Nature Reserve. 1995;14(3):69-88.Search in Google Scholar

[30] Sawicka-Kapusta K, Zakrzewska M, Gdula-Argasińska J. Air pollution in the base stations of the Environmental Integrated Monitoring System in Poland. Air Pollut. 2005;XIII:465-475. WOS: 000230300700049.Search in Google Scholar

[31] Jóźwiak MA, Jóźwiak M. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecol Chem Eng S. 2009;16(3):323-334.WOS:000272740900006.Search in Google Scholar

[32] Jóźwiak MA, Jóźwiak M, Kozłowski R. Bioindicative assessment methods of urban transport impact on the natural environment. Monographs of Systems Operations Team PAS. 2010;II:177-199.Search in Google Scholar

[33] Jóźwiak MA. The use of indicative organisms in bioindication of land and water environments with the chosen examples. Kielce: Kielce Scientific Society; 2014.Search in Google Scholar

[34] Serafiński W, Szulakowska G, Wielgus-Serafińska E, Sajdak G. Studies on biology of fresh-water snails from Silesian Industrial Area. III. Accumulation and localization of lead in shells and tissues of Planorbariuscorneus (L.). Acta Biol. 1978;5:19-23.Search in Google Scholar

[35] Pieczyńska E. The role of macrophytes in shaping trophic lakes. Ecol News. 1988;34:375-405.Search in Google Scholar

[36] Strzelec M, Serafiński W. Live cycles freshwater planorbid snails in anthropogenic water bodies. Acta Biol Siles. 1994;24:104-117.Search in Google Scholar

[37] Strzelec M. The effects of elevated water temperature on occurrence of freshwater snails in Rybnik dam reservoirs (Upper Silesia, Poland). Folia Malacologica. 1999;7:93-98.10.12657/folmal.007.009Search in Google Scholar

[38] Gorzel M. Kornijów R. Biological evaluation of the quality of river water. Space - The Problems of Biol Sci. 2004;53(2):183-191.Search in Google Scholar

[39] Szoszkiewicz K, Zbierska J, Jusik S, Zgoła T. The assessment method based on macrophyte rivers run in Poland for the purposes of the Water Framework Directive. Messages Drainage and Grasses Area. 2008;LI(4):163-165.Search in Google Scholar

[40] Ellenberg H. Zeigerwerte der Gefaßpflanzen Mitteleuropas, 2. Aufl. Scripta Geobotan. 1979;9:1-122.Search in Google Scholar

[41] Ellenberg H. Belastung und Belastbarkeit von Ökosystemen, Tagungsbericht der Gesellschahh für Ökologie. Giessen: 1972;2:34-42.Search in Google Scholar

[42] Barker MJ. Biological monitoring principles methods and difficulties. In: Barker MJ, editor. Marine ecology and oil pollution. New York: Wiley and Sons. Inc.; 1976;4:41-53.Search in Google Scholar

[43] Bick H. Bioindikatoren und Umweltschutz. Berlin: Dechemniana - Beichefte; 1982.Search in Google Scholar

[44] Burton MAS. Biological monitoring of environmental contaminants (plants). Rapost 32. GEMS -Monitoring and Assessment Research Centre. London: King's College London, University of London; 1986.Search in Google Scholar

[45] Vinogradov BV. Remote sansing bioindication errors. In: Bohac J, editor. Bioindycatores ReVIth Int. Conf. Ceskie Budejovice. 1992;4:53-59.Search in Google Scholar

[46] Majstrik V. Principles of Bioindication and Biomonitoring Theoretical Problems and Practical Applications. In: Bohac J, editor. Bioindicatores Deteriorisationi Regions. Ceskie Budejowice, 1992;2:11-23. Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117:77-87.10.1016/S0269-7491(01)00164-6Search in Google Scholar

[48] Calvelo S, Liberatore S. Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina. J Atmospher Chem. 2004;49:199-210. DOI: 10.1007/s10874-004-1225-8.10.1007/s10874-004-1225-8Search in Google Scholar

[49] Conti ME, Tudino M, Stripeikis J, Cecchetti G. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy. J Atmospher Chem. 2004;49:83-94. DOI: 10.1007/s10874-004-1216-9.10.1007/s10874-004-1216-9Search in Google Scholar

[50] Kosiba P. Biomonitoring of air reactions of mosses in conditions of pollution with industry emissions. Bot U Wroc. 2004;3:74-77.Search in Google Scholar

[51] Sloof JE. Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmospher Environ. 1995;29:11-20.10.1016/1352-2310(94)00221-6Search in Google Scholar

[52] Garty J, Kauppi M, Kauppi A. The influence of air pollution on the concentration of airborne elements and on the production of stress-ethylene in the lichen Usnea hirta (L) Weber em Mot transplanted in urban sites in Oulu, N Finland. Arch Environ Contam Toxicol. 1997;32:285-290. DOI: 10.1007/s002449900186.10.1007/s002449900186Search in Google Scholar

[53] González CM, Orellana LC, Casanovas SS, Pignata ML. Environmental conditions and chemical response of transplanted lichen to an urban area. J Environ Manage. 1998;53:73-81.10.1006/jema.1998.0194Search in Google Scholar

[54] Carreras HA, Pignata ML. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environ Pollut. 2002;117:77-87.10.1016/S0269-7491(01)00164-6Search in Google Scholar

[55] Malkholm MM, Bennett JP. Mercury accumulation in transplanted Hypogymnia physodes lichens downwind of Wisconsin chloralkali plant. Water Air Soil Pollut. 1998;102:427-436.10.1023/A:1004977717769Search in Google Scholar

[56] Jensen M, Chakir S, Feige GB. Osmotic and atmospheric dedratation effects in the lichens Hypogymnia physodes, Lobaria pulmonaria, and Peltigera aphthosa: an in vivo study of the chlorophyll fluorescence induction. Photosynthetica. 1999;37(3):393-404.10.1023/A:1007151625527Search in Google Scholar

[57] Conti ME, Cecchetti G. Biological monitoring: lichens as bioindicators of air pollution assessment -a review. Environ Pollut. 2001;114:471-492.10.1016/S0269-7491(00)00224-4Search in Google Scholar

[58] Białońska D, Dayan FE. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J Chem Ecol. 2005;31(12):2975-2991. DOI: 10.1007/s10886-005-8408-x.10.1007/s10886-005-8408-x16365718Search in Google Scholar

[59] Sawicka-Kapusta K. Zakrzewska M, Bydłoń G. Biological monitoring - the useful method for estimation of fair and environment quality. Air Pollut. 2007;XV:353-362.10.2495/AIR070351Search in Google Scholar

[60] Jóźwiak M. Accumulation of heavy metals and morphological changes in thalli of Hypogymnia physodes (L.)Nyl.) lichen. Natural Environ Monit. 2007;8/07:51-56.Search in Google Scholar

[61] Cortés E. Investigation of air pollution in Chile using biomonitors. J Radioanalyt Nuclear Chem. 2003;262(1):269.276.10.1023/B:JRNC.0000040885.09041.2eSearch in Google Scholar

[62] Godinho RM, Freitas MC, Wolterbeek HT. Assessment of lichen vitality during transplantation experiment to a polluted site. J Atmospher Chem. 2004;49(1-3):355-361.10.1007/s10874-004-1251-6Search in Google Scholar

[63] Poličnik H, Batič F, Cvetka RL. Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J Atmospher Chem. 2004;49:223-230.Search in Google Scholar

[64] Garty J, Levin T, Lehr H, Tomer S, Hochman A. Interactive effects of UV-B radiation and chemical contamination on physiological parameters in the lichen Ramalina lacer. J Atmospher Chem. 2004;49:267-289.10.1007/s10874-004-1232-9Search in Google Scholar

[65] Vestergaard NK, Stephansen U, Rasmussen L, Pilegaard K. Airborne heavy metal pollution in the environment of a Danish steel plant. Water Air Soil Pollut. 1986;27(3-4):363-377. DOI: 10.1007/BF00649418.10.1007/BF00649418Search in Google Scholar

[66] Motiejflnaité J. Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in Central Lithuania. Environ Pollut. 2007;146:341-350.10.1016/j.envpol.2006.03.03416725244Search in Google Scholar

[67] Jeran Z, Byrne AR, Batić F. Transplanted epiphytic lichens as biomonitors of air - contamination by natural radionuclides around the Źirowski VRH Uranium Mine, Slovenia. Lichenologist. 1995;27(5):375-385.10.1006/lich.1995.0035Search in Google Scholar

[68] Calatayud A, Temple PJ, Barrend E. Chlorophyll a fluorescence emission, xanthophyll cycle activity, and net photosynthetic rate responses to ozone in some foliose and friutcose lichen species. Photosyntetica. 2000;38:281-286.10.1023/A:1007214915785Search in Google Scholar

[69] Brodo IM. Transplanted experiments with corticolus lichens using a new technique. Ecology. 1961;42:838-841.10.2307/1933522Search in Google Scholar

[70] Mizera A. Soil. Mechanisms of degradation and restoration method. Publication GreenWorld - Environ Protect and Ecol. 2007;1:73-79.Search in Google Scholar

[71] De Jonie H, Freijer JI. Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils. Environ Sci Technol. 1997;7:389-402.Search in Google Scholar

[72] Czerniawska-Kusza I, Szoszkiewicz K. Biological or Hydromorphological Assessment of Flowing Water on the Example of the River Small Panew. Opole: Department of Land Protection, University of Opole; 2007.Search in Google Scholar

[73] Nałęcz-Jawecki G. Aquatic toxicity test method bioindicative. Biul Farmac. 2003;2:34-39.Search in Google Scholar

[74] Elder JF, Collins JJ, Freshwater molluscs as indicators of bioavailability and toxicity of metals in surface-water systems. Rev Environ Contam Toxicol. 1991;122:37-79.10.1007/978-1-4612-3198-1_2Search in Google Scholar

[75] Jurkiewicz-Karnkowska E, Krolak E. Heavy metal concentrations in molluscs from the Zegrzynski Reservoir and the rivers supplying it. Pol Arch Hydrobiol. 1996;43(3):335-346.Search in Google Scholar

[76] Piotrowski S. Heavy metal contents in shells of Lymnaea peregra (O.F. Müll.) and Lymnaea stagnalis (L.) from a fish pond in the area of Kłeby near Nowogard. Quaternary Studies in Poland, Special Issue. 1999; 281-288.Search in Google Scholar

[77] Van-Balognah K, Fernandez DS, Salanki J. Heavy metal concentrations of Lymnea stagnalis L. in the environs of lake Balaton (Hungary). Wat Res. 1988;22:1205-1210.10.1016/0043-1354(88)90106-6Search in Google Scholar

[78] Gomot-de Vaufleury A, Kerhoas I. Bull of Environ Contamin and Toxicol. 2000;64(3):434-442.10.1007/s00128000001910757670Search in Google Scholar

[79] Coeurdassier M, Scheifler R, de Vaufleury A, Crini N, Saccomani C, Salomon Du Mont L, et al. Earthworms influence metal transfer from soil to snails. Applied Soil Ecol. 2007;35(2):302-310.10.1016/j.apsoil.2006.08.004Search in Google Scholar

[80] Chitmanat C, Pracobsin N, Chaibu P, Traichaiyapom S. The use of acetylcholinesterase inhibition in river snails (Sinotaia ingallsiana) to determine the pesticide contamination in the Upper Ping River. Int J Agricult and Biol. 2008;10(6):658-660.Search in Google Scholar

[81] Parleman H, Meili M. Mercury in macroinvertebrates from Swedish forest lakes: influence of lake type, habitat, life cycle and food quality. Can J Fish Aquat Sci. 1993;50:521-534.10.1139/f93-061Search in Google Scholar

[82] Scott-Fordsmand JJ, Weeks JM, Hopkin SP. Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetida (Oligochaeta: Annelida), using neutral-red retention assay. Environ Toxicol Chem. 2000;19:1774-1780.10.1002/etc.5620190710Search in Google Scholar

[83] Berger B, Dallinger R. Terrestrial snails as quantitative indicators of environmental metal pollution. Environ Monit Assess. 1993;25:65-84. DOI: 10.1007/BF00549793.10.1007/BF0054979324227457Search in Google Scholar

eISSN:
1898-6196
Language:
English