Open Access

A Simultaneous Analytical Method to Profile Non-Volatile Components with Low Polarity Elucidating Differences Between Tobacco Leaves Using Atmospheric Pressure Chemical Ionization Mass Spectrometry Detection

   | May 18, 2016

Cite

A comprehensive analytical method using liquid chromatography atmospheric pressure chemical ionization mass spectrometry detector (LC/APCI-MSD) was developed to determine key non-volatile components with low polarity elucidating holistic difference among tobacco leaves. Nonaqueous reversed-phase chromatography (NARPC) using organic solvent ensured simultaneous separation of various components with low polarity in tobacco resin. Application of full-scan mode to APCI-MSD hyphenated with NARPC enabled simultaneous detection of numerous intense product ions given by APCI interface. Parameters for data processing to filter, feature and align peaks were adjusted in order to strike a balance between comprehensiveness and reproducibility in analysis. 63 types of components such as solanesols, chlorophylls, phytosterols, triacylglycerols, solanachromene and others were determined on total ion chromatograms according to authentic components, wavelength spectrum and mass spectrum. The whole area of identified entities among the ones detected on total ion chromatogram reached to over 60% and major entities among those identified showed favorable linearity of determination coefficient of over 0.99. The developed method and data processing procedure were therefore considered feasible for subsequent multivariate analysis. Data matrix consisting of a number of entities was then subjected to principal component analysis (PCA) and hierarchical clustering analysis. Cultivars of tobacco leaves were distributed far from each cultivar on PCA score plot and each cluster seemed to be characterized by identified non-volatile components with low polarity. While fluecured Virginia (FCV) was loaded by solanachromene, phytosterol esters and triacylglycerols, free phytosterols and chlorophylls loaded Burley (BLY) and Oriental (ORI) respectively. Consequently the whole methodology consisting of comprehensive method and data processing procedure proved useful to determine key-components among cultivars of tobacco leaves, and was expected to additionally expand coverage that metabolomics study has ensured. [Beitr. Tabakforsch. Int. 27 (2016) 60-73]

eISSN:
1612-9237
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
General Interest, Life Sciences, other, Physics