Open Access

Stiffness of Carpentry Connections – Numerical Modelling vs. Experimental Test


Cite

[1] EN 1995-1-1:2004/A1:2008: Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings.Search in Google Scholar

[2] PIAZZA, M. - CANDELPERGHER, L.: Mechanics of traditional connections with metal devices in timber roof structures. In Proceedings of the 7th Int. Conf. STREMAH. Bologna, Italy, 2001, pp. 415-424.Search in Google Scholar

[3] PALMA, P. - CRUZ, H.: Mechanical behaviour of traditional timber carpentry joints in service conditions-results of monotonic tests. In From material to structure, Mechanical behaviour and failures of the timber structures, ICOMOS IWC-XVI International Symposium. Florence, Venice and Vicenza, Italy, 2007.Search in Google Scholar

[4] BRANCO, J. M.: Influence of the joints stiffness in the monotonic and cyclic behaviour of traditional timber trusses. Assessment of the efficacy of different strengthening techniques: Doctoral thesis. University of Minho and University of Trento. Portugal, Italy, 2008.Search in Google Scholar

[5] DESCAMPS, T. - LEMLYN, P.: Effects of the rotational, axial and transversal stiffness of the joints on the static response of old timber framings. In Proceedings of the International Conference on the Protection of Historical Buildings. Rome, Italy, 2009, pp. 281-286.Search in Google Scholar

[6] FEIO, A. O.: Inspection and diagnosis of historical timber structures: NDT correlations and structural behaviour. Doctoral thesis. University of Minho, Portugal, 2005.Search in Google Scholar

[7] KEKELIAK, M.: Stiffness of carpentry connections. Proceedings of conference HISTORICKÉ KROVY 2014. (In print).Search in Google Scholar

[8] FEIO, A. - MACHADO, J. S.: Traditional timber carpentry joints: monotonic tests and modelling.: COST FP1004, Experimental Research with Timber, May 21-23, 2014, Prague, Czech Republic. Schober, K.U., University of Bath, United Kingdom, 2014. 218p.Search in Google Scholar

[9] ANSYS®, Academic Research, Release 12.0. 2009. ANSYS, Inc. Documentation for Release 12.0.Search in Google Scholar

[10] BLASS, H. J. - GÖRLACHER, R.: Compression perpendicular to the grain. In Proceedings of the 8th World Conference on Timber Engineering WCTE 2004, Vol. 2. Lahti, Finland, 2004, pp. 435-440.Search in Google Scholar

[11] KOLLMANN, F.: Principles of wood science and technology, vol. I. Berlin : Springer-Verlag, 1984. 592p. ISBN 3-540-04297-0.Search in Google Scholar

[12] LEWIS, W. C.: Hardness modulus as an alternate measure of hardness to the standard Janka ball for wood and wood-base materials : Research Note, FPL-0189. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, 1968. 13p.Search in Google Scholar

[13] KLEMENT, I. - RÉH, R. - DETVAJ, J.: Základné charakteristiky lesných drevín. NLC Zvolen, 2010, 82p. ISBN 978-80-8093-112-4.Search in Google Scholar

[14] WIEMANN, M. C. - GREEN, D. W.: 2007. Estimating Janka hardness from specific gravity for tropical and temperate species : Research Paper FPL-RP-643. USDA Forest Service, Forest Products Laboratory, Madison, Wisconsin, 2007. 21p.Search in Google Scholar

[15] EC - Certificate of Conformity. 0672-CPD-I 14.21.57, ETA-13/0646 : Glued laminated timber made of hardwood. Materialprüfungsanstalt Universität Stuttgart. 2013.Search in Google Scholar

[16] VEGA, C. A.: Caracterización mecánica de la madera estructural de Castanea sativa Mill. Clasificación visual y evaluación mediante métodos no destructivos : Tesis doctoral. Universidad de Santiago de Compostela. España, 2013.Search in Google Scholar

[17] EN 338:2004: Structural timber. Strength classes.Search in Google Scholar

eISSN:
1336-5835
Language:
English