Open Access

A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation

   | Dec 22, 2017

Cite

1. O. Morandi and L. Demeio, A Wigner-function approach to interband transitions based on the multiband-envelope-function model, Transp. Theor. Stat. Phys., vol. 37, no. 5-7, pp. 473-459, 2008.10.1080/00411450802536607Search in Google Scholar

2. O. Morandi and F. Schürrer, Wigner model for quantum transport in graphene, J. Phys. A: Math. Theor., vol. 26, p. 265301, 2011.Search in Google Scholar

3. S. Shao, T. Lu, and W. Cai, Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport, Comm. Comput. Phys., vol. 9, no. 3, pp. 711-739, 2011.10.4208/cicp.080509.310310sSearch in Google Scholar

4. A. Dorda and F. Schürrer, A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes, J. Comp. Electr., vol. 284, pp. 95-116, 2015.10.1016/j.jcp.2014.12.026439414825892748Search in Google Scholar

5. O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations, COMPEL, vol. 30, no. 2, pp. 519-537, 2011.10.1108/03321641111101050Search in Google Scholar

6. O. Muscato, W. Wagner, and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors, Kinetic and Related Models, vol. 4, no. 3, pp. 809-829, 2011.10.3934/krm.2011.4.809Search in Google Scholar

7. O. Muscato, V. Di Stefano, and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. with Appl., vol. 65, no. 3, pp. 520-527, 2013.10.1016/j.camwa.2012.03.100Search in Google Scholar

8. D. Querlioz and P. Dollfus, The Wigner Monte Carlo method for nano- electronic devices. Wiley, 2010.Search in Google Scholar

9. P. Degond and C. Ringhofer, Quantum moment hydrodynamics and entropy principle, J. Stat. Phys., vol. 112, no. 3, pp. 587-628, 2003.Search in Google Scholar

10. V. Romano, Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle, J. Math. Phys., vol. 48, no. 12, p. 123504, 2007.Search in Google Scholar

11. A. Jüngel, J. Lopez, and J. Montejo Gamez, A new derivation of the quantum Navier-Stokes equations in the Wigner-Fokker-Planck approach, J. Stat. Phys., vol. 145, no. 6, pp. 1661-1673, 2011.Search in Google Scholar

12. L. Barletti, G. Frosali, and O. Morandi, Kinetic and hydrodynamic models for multi-band quantum transport in crystals, Lect. Notes Comp. Sci. Engineer., vol. 94, pp. 3-56, 2014.10.1007/978-3-319-01427-2_1Search in Google Scholar

13. H. Kosina, Wigner function approach to nano device simulation, Int. J. Comp. Scien. Engineer., vol. 2, no. 3-4, pp. 100-118, 2006.10.1504/IJCSE.2006.012762Search in Google Scholar

14. M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer, and D. K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices, Phys. Rev. B, vol. 70, p. 115319, 2004.Search in Google Scholar

15. W. Wagner, A random cloud model for the Wigner equation, Kinet. Rel. Models, vol. 9, no. 1, pp. 217-235, 2016.10.3934/krm.2016.9.217Search in Google Scholar

16. O. Muscato and W. Wagner, A class of stochastic algorithms for the Wigner equation, SIAM J. Sci. Comput., vol. 38, no. 3, pp. A1438- A1507, 2016.10.1137/16M105798XSearch in Google Scholar

17. P. Markovich, C. Ringofer, and C. Schmeiser, Semiconductor equations. Springer-Verlag, 1990.10.1007/978-3-7091-6961-2Search in Google Scholar

18. P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr, and I. Dimov, Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition, Phys. Rev. B, vol. 70, p. 115319, 2004.Search in Google Scholar

19. S. Shao and J. Sellier, Comparison of deterministic and stochastic methods for time-dependent Wigner simulations, J. Comp. Phys., vol. 300, pp. 167-185, 2015.10.1016/j.jcp.2015.08.002Search in Google Scholar

20. C. Jacoboni and L. Reggiani, The monte carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys., vol. 55, no. 3, pp. 645-705, 1983.10.1103/RevModPhys.55.645Search in Google Scholar

21. S. Chin and C. Chen, Fourth order gradient symplectic integrator methods for solving the time-dependent schrödinger equation, J. Chem. Phys., vol. 114, pp. 7338-7341, 2001.Search in Google Scholar

22. O. Muscato and V. Di Stefano, Hydrodynamic modeling of silicon quantum wires, J. Comput. Electron., vol. 11, no. 1, pp. 45-55, 2012.10.1007/s10825-012-0381-3Search in Google Scholar

23. O. Muscato and V. Di Stefano, Hydrodynamic simulation of a n+ - n - n+ silicon nanowire, Contin. Mech. Thermodyn., vol. 26, pp. 197-205, 2014.10.1007/s00161-013-0296-7Search in Google Scholar

24. O. Muscato and T. Castiglione, Electron transport in silicon nanowires having different cross-sections, Comm. Appl. Ind. Math., vol. 7, no. 2, pp. 8-25, 2016.10.1515/caim-2016-0003Search in Google Scholar

25. O. Muscato and T. Castiglione, A hydrodynamic model for silicon nanowires based on the maximum entropy principle, Entropy, vol. 18, no. 10, p. 368, 2016.10.3390/e18100368Search in Google Scholar

26. O. Muscato and V. Di Stefano, Hydrodynamic modeling of the electrothermal transport in silicon semiconductors, J. Phys. A: Math. Theor., vol. 44, no. 10, p. 105501, 2011.Search in Google Scholar

27. O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors, J. Stat. Phys., vol. 144, no. 1, pp. 171-197, 2011.10.1007/s10955-011-0247-2Search in Google Scholar

28. V. Di Stefano and O. Muscato, Seebeck effect in silicon semiconductors, Acta Appl. Math., vol. 122, no. 1, pp. 225-238, 2012.10.1007/s10440-012-9739-6Search in Google Scholar

29. O. Muscato and V. Di Stefano, Electro-thermal behaviour of a submicron silicon diode, Semicond. Sci. Tech., vol. 28, no. 2, p. 025021, 2013.Search in Google Scholar

30. O. Muscato and V. D. Stefano, Electrothermal transport in silicon carbide semiconductors via a hydrodynamic model, SIAM J. APPL. MATH., vol. 75, no. 4, pp. 1941-1964, 2015.Search in Google Scholar

31. G. Mascali, A hydrodynamical model for silicon semiconductors including crystal heating, Europ. J. Appl. Math., vol. 26, pp. 477-496, 2015.10.1017/S0956792515000157Search in Google Scholar

32. G. Mascali, A new formula for silicon thermal conductivity based on a hierarchy of hydrodynamical models, J. Stat. Phys., vol. 163, no. 5, pp. 1268-1284, 2016.Search in Google Scholar

33. M. Coco, G. Mascali, and V. Romano, Monte Carlo analysis of the thermal effects in monolayer graphene, J. Comp. Theor. Transp., vol. 45, no. 7, pp. 540-553, 2016.10.1080/23324309.2016.1211537Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics