Open Access

POD-Galerkin reduced order methods for CFD using Finite Volume Discretisation: vortex shedding around a circular cylinder


Cite

1. M. P. Païdoussis, Fluid-Structure Interactions. Slender Structures and Axial Flow. Volume 1. Academic Press, first ed., 1998.10.1016/S1874-5652(98)80003-3Search in Google Scholar

2. M. P. Païdoussis, Fluid-Structure Interactions. Slender Structures and Axial Flow. Volume 2. Academic Press, first ed., 2003.Search in Google Scholar

3. V. Strouhal, Über eine besondere Art der Tonerregung, Annalen der Physik, vol. 241, no. 10, pp. 216-251, 1878.10.1002/andp.18782411005Search in Google Scholar

4. M. M. Zdravkovich, Flow around Circular Cylinders: Volume 2: Appli- cations, vol. 2. Oxford University Press, 2003. Search in Google Scholar

5. M. M. Zdravkovich, Flow around Circular Cylinders: Volume 1: Funda- mentals, vol. 350. Cambridge University Press, 1997.10.1115/1.2819655Search in Google Scholar

6. R. T. Hartlen and I. G. Currie, Lift-oscillator model of vortex-induced vibration, Journal of the Engineering Mechanics Division, vol. 96, no. 5, pp. 577-591, 1970.10.1061/JMCEA3.0001276Search in Google Scholar

7. M. Facchinetti, E. de Langre, and F. Biolley, Coupling of structure and wake oscillators in vortex-induced vibrations, Journal of Fluids and Structures, vol. 19, no. 2, pp. 123 - 140, 2004.10.1016/j.jfluidstructs.2003.12.004Search in Google Scholar

8. G. Stabile, H. G. Matthies, and C. Borri, A novel reduced order model for vortex induced vibrations of long exible cylinders, Submitted to Journal of Ocean Engineering, 2016.Search in Google Scholar

9. J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer International Publishing, 2016.10.1007/978-3-319-22470-1Search in Google Scholar

10. A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations. Springer International Publishing, 2016.10.1007/978-3-319-15431-2Search in Google Scholar

11. B. R. Noack and H. Eckelmann, A low-dimensional Galerkin method for the three-dimensional ow around a circular cylinder, Physics of Fluids, vol. 6, no. 1, pp. 124-143, 1994.10.1063/1.868433Search in Google Scholar

12. I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, On the stability and extension of reduced-order Galerkin models in incompressible ows, The- oretical and Computational Fluid Dynamics, vol. 23, no. 3, pp. 213-237, 2009.10.1007/s00162-009-0112-ySearch in Google Scholar

13. S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza, POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Computer Methods in Applied Mechanics and Engineering, vol. 311, pp. 151 - 179, 2016.10.1016/j.cma.2016.08.006Search in Google Scholar

14. M. Bergmann, C.-H. Bruneau, and A. Iollo, Enablers for robust POD models, Journal of Computational Physics, vol. 228, no. 2, pp. 516-538, 2009.10.1016/j.jcp.2008.09.024Search in Google Scholar

15. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in uid dynamics, SIAM Journal on Numerical Analysis, vol. 40, no. 2, pp. 492-515, 2002.10.1137/S0036142900382612Search in Google Scholar

16. J. Burkardt, M. Gunzburger, and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes ows, Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 1-3, pp. 337-355, 2006.10.1016/j.cma.2006.04.004Search in Google Scholar

17. J. Baiges, R. Codina, and S. Idelsohn, Reduced-order modelling strategies for the finite element approximation of the incompressible Navier- Stokes equations, Computational Methods in Applied Sciences, vol. 33, pp. 189-216, 2014.10.1007/978-3-319-06136-8_9Search in Google Scholar

18. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics. The Finite Volume Method. London: Longman Group Ltd., 1995.Search in Google Scholar

19. F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Springer Publishing Company, Incorporated, 1st ed., 2015.10.1007/978-3-319-16874-6Search in Google Scholar

20. H. G.Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics, vol. 12, no. 6, pp. 620-631, 1998.10.1063/1.168744Search in Google Scholar

21. H. Jasak, Error analysis and estimation for the finite volume method with applications to uid ows. PhD thesis, Imperial College, University of London, 1996.Search in Google Scholar

22. R. Issa, Solution of the implicitly discretised uid ow equations by operator-splitting, Journal of Computational Physics, vol. 62, no. 1, pp. 40-65, 1986.10.1016/0021-9991(86)90099-9Search in Google Scholar

23. S. Patankar and D. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic ows, International Journal of Heat and Mass Transfer, vol. 15, no. 10, pp. 1787 - 1806, 1972.Search in Google Scholar

24. A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa, A numerical investigation of velocity-pressure reduced order models for incompressible ows, Journal of Computational Physics, vol. 259, pp. 598 - 616, 2014.10.1016/j.jcp.2013.12.004Search in Google Scholar

25. G. Rozza, D. Huynh, and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Archives of Computational Methods in Engineering, vol. 15, no. 3, pp. 229-275, 2008.10.1007/s11831-008-9019-9Search in Google Scholar

26. F. Chinesta, A. Huerta, G. Rozza, and K. Willcox, Model Order Reduction, Encyclopedia of Computational Mechanics, In Press, 2017.Search in Google Scholar

27. F. Chinesta, P. Ladeveze, and E. Cueto, A Short Review on Model Order Reduction Based on Proper Generalized Decomposition, Archives of Computational Methods in Engineering, vol. 18, no. 4, p. 395, 2011.10.1007/s11831-011-9064-7Search in Google Scholar

28. A. Dumon, C. Allery, and A. Ammar, Proper general decomposition (PGD) for the resolution of Navier-Stokes equations, Journal of Com- putational Physics, vol. 230, no. 4, pp. 1387-1407, 2011.Search in Google Scholar

29. L. Sirovich, Turbulence and the Dynamics of Coherent Structures part I: Coherent Structures, Quarterly of Applied Mathematics, vol. 45, no. 3, pp. 561-571, 1987.10.1090/qam/910462Search in Google Scholar

30. A. Quarteroni and G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numerical Meth- ods for Partial Differential Equations, vol. 23, no. 4, pp. 923-948, 2007. 10.1002/num.20249Search in Google Scholar

31. G. Rozza, Reduced basis methods for Stokes equations in domains with non-affine parameter dependence, Computing and Visualization in Sci- ence, vol. 12, no. 1, pp. 23-35, 2009.10.1007/s00791-006-0044-7Search in Google Scholar

32. D. Xiao, F. Fang, A. Buchan, C. Pain, I. Navon, J. Du, and G. Hu, Non linear model reduction for the navier stokes equations using residual deim method, Journal of Computational Physics, vol. 263, pp. 1 - 18, 2014.10.1016/j.jcp.2014.01.011Search in Google Scholar

33. M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol. 339, no. 9, pp. 667 - 672, 2004.10.1016/j.crma.2004.08.006Search in Google Scholar

34. K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational uid dynamics and turbulent ows, Jour- nal of Computational Physics, vol. 242, pp. 623 - 647, 2013.10.1016/j.jcp.2013.02.028Search in Google Scholar

35. B. R. Noack, P. Papas, and P. A. Monkewitz, The need for a pressureterm representation in empirical Galerkin models of incompressible shear ows, Journal of Fluid Mechanics, vol. 523, pp. 339-365, 01 2005.10.1017/S0022112004002149Search in Google Scholar

36. A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag, Lowdimensional models for complex geometry ows: Application to grooved channels and circular cylinders, Physics of Fluids A: Fluid Dynamics, vol. 3, no. 10, pp. 2337-2354, 1991.Search in Google Scholar

37. X. Ma and G. Karniadakis, A low-dimensional model for simulating three-dimensional cylinder ow, Journal of Fluid Mechanics, vol. 458, pp. 181-190, 2002.10.1017/S0022112002007991Search in Google Scholar

38. F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, International Journal for Nu- merical Methods in Engineering, vol. 102, no. 5, pp. 1136-1161, 2015.Search in Google Scholar

39. G. Rozza and K. Veroy, On the stability of the reduced basis method for Stokes equations in parametrized domains, Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 7, pp. 1244 - 1260, 2007.Search in Google Scholar

40. G. Rozza, D. B. P. Huynh, and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes ows in parametrized geometries: Roles of the inf-sup stability constants, Numerische Math- ematik, vol. 125, no. 1, pp. 115-152, 2013.10.1007/s00211-013-0534-8Search in Google Scholar

41. I. Kalashnikova and M. F. Barone, On the stability and convergence of a Galerkin reduced order model (ROM) of compressible ow with solid wall and far-field boundary treatment, International Journal for Numerical Methods in Engineering, vol. 83, no. 10, pp. 1345-1375, 2010.Search in Google Scholar

42. S. Sirisup and G. Karniadakis, Stability and accuracy of periodic ow solutions obtained by a POD-penalty method, Physica D: Nonlinear Phenomena, vol. 202, no. 3-4, pp. 218 - 237, 2005.10.1016/j.physd.2005.02.006Search in Google Scholar

43. W. R. Graham, J. Peraire, and K. Y. Tang, Optimal control of vortex shedding using low-order models. Part I:open-loop model development, International Journal for Numerical Methods in Engineering, vol. 44, no. 7, pp. 945-972, 1999.10.1002/(SICI)1097-0207(19990310)44:7<945::AID-NME537>3.0.CO;2-FSearch in Google Scholar

44. S. Makridakis, Accuracy measures: theoretical and practical concerns, International Journal of Forecasting, vol. 9, no. 4, pp. 527 - 529, 1993.10.1016/0169-2070(93)90079-3Search in Google Scholar

45. G. Stabile and G. Rozza, Stabilized Reduced order POD-Galerkin techniques for finite volume approximation of the parametrized Navier- Stokes equations, submitted, 2017.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics