Open Access

Computational modeling of the electromechanical response of a ventricular fiber affected by eccentric hypertrophy


Cite

1. C. Mihl, W. R. Dassen, and H. Kuipers, Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes, Neth. Heart J., vol. 16, pp. 129-133, 2008.10.1007/BF03086131230046618427637Search in Google Scholar

2. V. Kumar, A. K. Abbas, and N. Fausto, Robbins and Cotran Pathologic Basis of Disease. Philadelphia: Elsevier Saunders, 2005.Search in Google Scholar

3. J. Ross Jr., Dilated cardiomyopathy: concepts derived from gene deficient and transgenic animal models, Circ. J., vol. 66, pp. 219-224, 2002.10.1253/circj.66.21911922267Search in Google Scholar

4. E. Berberoglu, H. O. Solmaz, and S. Goktepe, Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Eur. J. Mech. A/Solids, vol. 48, pp. 60-73, 2014.10.1016/j.euromechsol.2014.02.021Search in Google Scholar

5. S. Goktepe, O. J. Abilez, K. K. Parker, and E. Kuhl, A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis, J. Theor. Biol., vol. 265, pp. 433-442, 2010.10.1016/j.jtbi.2010.04.02320447409Search in Google Scholar

6. R. C. Kerckhoffs, J. Omens, and A. D. McCulloch, A single strainbased growth law predicts concentric and eccentric cardiac growth during pressure and volume overload, Mech. Res. Commun., vol. 42, pp. 40-50, 2012.10.1016/j.mechrescom.2011.11.004335880122639476Search in Google Scholar

7. L. C. Lee, J. Sundnes, M. Genet, J. F. Wenk, and S. T. Wall, An integrated electromechanicalgrowth heart model for simulating cardiac therapies, Biomech. Model. Mechanobiol., vol. 15, pp. 791-803, 2016.10.1007/s10237-015-0723-826376641Search in Google Scholar

8. L. B. Katsnelson, N. A. Vikulova, A. G. Kursanov, O. E. Solovyova, and V. S. Markhasin, Electromechanical coupling in a onedimensional model of heart muscle fiber, Russian J. Numer. Anal. Math. Model., vol. 29, pp. 1-13, 2014.10.1515/rnam-2014-0022Search in Google Scholar

9. N. H. Kuijpers, H. M. ten Eikelder, P. H. Bovendeerd, S. Verheule, T. Arts, and P. A. Hilbers, Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics, Am. J. Physiol. Heart Circ. Physiol., vol. 292, pp. H2832-H2853, 2007.10.1152/ajpheart.00923.200617277026Search in Google Scholar

10. M. I. Noble, T. E. Bowen, and L. L. Hefner, Forcevelocity relationship of cat cardiac muscle, studied by isotonic and quickrelease techniques, Circ. Res., vol. 24, pp. 821-833, 1969.10.1161/01.RES.24.6.821Search in Google Scholar

11. N. A. Vikulova, L. B. Katsnelson, A. G. Kursanov, O. Solovyova, and V. S. Markhasin, Mechanoelectric feedback in onedimensional model of myocardium, J. Math. Biol., vol. 73, pp. 335-366, 2016.10.1007/s00285-015-0953-526687545Search in Google Scholar

12. S. A. Niederer and N. P. Smith, An improved numerical method for strong coupling of excitation and contraction models in the heart, Prog. Biophys. Mol. Biol., vol. 96, pp. 90-111, 2008.10.1016/j.pbiomolbio.2007.08.001Search in Google Scholar

13. J. P. Whiteley, M. J. Bishop, and D. J. Gavaghan, Soft tissue modelling of cardiac fibres for use in coupled mechanoelectric simulations, Bull. Math. Biol., vol. 69, pp. 2199-2225, 2007.Search in Google Scholar

14. E. H. Sonnenblick, Forcevelocity relations in mammalian heart muscle, Am. J. Physiol., vol. 202, pp. 931-939, 1962.10.1152/ajplegacy.1962.202.5.931Search in Google Scholar

15. P. Colli Franzone, L. F. Pavarino, and S. Scacchi, Biolectrical e_ects of mechanical feedbacks in a strongly coupled cardiac electromechanical model, Math. Mod. Meth. Appl. S., vol. 26, pp. 27-57, 2016.10.1142/S0218202516500020Search in Google Scholar

16. P. Kohl, F. Sachs, and M. R. Franz, Cardiac Mechanoelectric Coupling & Arrhythmias. New York: Oxford University Press, 2011.10.1093/med/9780199570164.001.0001Search in Google Scholar

17. M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., vol. 85, pp. 501-522, 2004.10.1016/j.pbiomolbio.2004.01.016Search in Google Scholar

18. A. V. Panfilov, R. H. Keldermann, and M. P. Nash, Selforganized pacemakers in a coupled reactiondiffusionmechanics system, Phys. Rev. Lett., vol. 95, p. 258104, 2005.Search in Google Scholar

19. G. A. Holzapfel, Nonlinear Solid Mechanics: a Continuum Approach for Engineering. Chichester: John Wiley & Sons, 2000.Search in Google Scholar

20. E. K. Rodriguez, A. Hoger, and A. D. McCulloch, Stressdependent finite growth in soft elastic tissues, J. Biomech., vol. 27, pp. 455-467, 1994.10.1016/0021-9290(94)90021-3Search in Google Scholar

21. D. Ambrosi, G. A. Ateshian, E. M. Arruda, S. C. Cowin, J. Dumais, A. Goriely, G. A. Holzapfel, J. D. Humphrey, R. Kemkemer, E. Kuhl, J. E. Olberding, L. A. Taber, and K. Garikipati, Perspectives on biological growth and remodeling, J. Mech. Phys. Solids, vol. 59, pp. 863-883, 2011.10.1016/j.jmps.2010.12.011308306521532929Search in Google Scholar

22. P. Pathmanathan and J. P. Whiteley, A numerical method for cardiac mechanoelectric simulations, Ann. Biomed. Eng., vol. 37, pp. 860-873, 2009.10.1007/s10439-009-9663-819263223Search in Google Scholar

23. H. M. Wang, H. Gao, X. Y. Luo, C. Berry, B. E. Grifith, R. W. Ogden, and T. J. Wang, Structurebased finite strain modelling of the human left ventricle in diastole, Int. J. Numer. Method. Biomed. Eng., vol. 29, pp. 83-103, 2013.10.1002/cnm.249723293070Search in Google Scholar

24. M. K. Rausch, A. Dam, S. G> 1 2ktepe, O. J. Abilez, and E. Kuhl, Computational modeling of growth: systemic and pulmonary hypertension in the heart, Biomech. Model. Mechanobiol., vol. 10, pp. 799-811, 2011.10.1007/s10237-010-0275-x323579821188611Search in Google Scholar

25. S. Land, S. A. Niederer, J. M. Aronsen, E. K. Espe, L. Zhang, W. E. Louch, I. Sjaastad, O. M. Sejersted, and N. P. Smith, An analysis of deformationdependent electromechanical coupling in the mouse heart, J. Physiol., vol. 590, pp. 4553-4569, 2012.Search in Google Scholar

26. G. M. Faber and Y. Rudy, Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study, Biophys. J., vol. 78, pp. 2392-2404, 2000.Search in Google Scholar

27. P. Colli Franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. Biosci., vol. 197, pp. 35-66, 2005.10.1016/j.mbs.2005.04.00316009380Search in Google Scholar

28. P. Colli Franzone, L. F. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophysiology. Cham: Springer, 2014.10.1007/978-3-319-04801-7Search in Google Scholar

29. C. S. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng., vol. 21, pp. 1-77, 1993.Search in Google Scholar

30. B. J. Roth, The electrical potential produced by a strand of cardiac muscle: a bidomain analysis, Ann. Biomed. Eng., vol. 16, pp. 609-637, 1988.10.1007/BF023680183228221Search in Google Scholar

31. R. M. Shaw and Y. Rudy, Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and Ltype calcium currents during reduced excitability and decreased gap junction coupling, Circ. Res., vol. 81, pp. 727-741, 1997.10.1161/01.RES.81.5.727Search in Google Scholar

32. S. A. Niederer and N. P. Smith, A mathematical model of the slow force response to stretch in rat ventricular myocytes, Biophys. J., vol. 92, pp. 4030-4044, 2007.Search in Google Scholar

33. W. Kroon, T. Delhaas, T. Arts, and P. H. Bovendeerd, Computational modeling of volumetric tissue growth: application to the cardiac left ventricle, Biomech. Model. Mechanobiol., vol. 8, pp. 301-309, 2009.10.1007/s10237-008-0136-z18758835Search in Google Scholar

34. S. Rush and H. Larsen, A practical algorithm for solving dynamic membrane equations, IEEE Trans. Biomed. Eng., vol. 25, pp. 389-392, 1978.10.1109/TBME.1978.326270689699Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics