Open Access

A coherent modeling procedure to describe cell activation in biological systems


Cite

1. O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell. Sci., vol. 122, pp. 3203–3208, 2009.Search in Google Scholar

2. A. A. Khalil and P. Friedl, Determinants of leader cells in collective cell migration, Integr. Biol., vol. 2, pp. 568–574, 2010.10.1039/c0ib00052c20886167Search in Google Scholar

3. V. T. Boekhorst, L. Preziosi, and P. Friedl, Plastiticy of cell migration in vivo and in silico, Annu. Rev. Cell Dev. Biol., vol. 32, pp. 491–526, 2016.10.1146/annurev-cellbio-111315-12520127576118Search in Google Scholar

4. P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell. Biol., vol. 10, pp. 445–457, 2009.10.1038/nrm272019546857Search in Google Scholar

5. Z. J. Liu, T. Shirakawa, Y. Li, A. Soma, M. Oka, G. P. Dotto, R. M. Fairman, O. C. Velazquez, and M. Herlyn, Regulation of notch1 and dll4 by vascular endothelial growth factor in arterial endothelial cells: implications for modulating arteriogenesis and angiogenesis, Mol. Cell. Biol., vol. 23, pp. 14–25, 2003.10.1128/MCB.23.1.14-25.200314066712482957Search in Google Scholar

6. M. Scianna, E. Bassino, and L. Munaron, A cellular potts model analyzing di_erentiated cell behavior during in vivo vascularization of a hypoxic tissue, Comput. Biol. Med., vol. 63, pp. 143–156, 2015.10.1016/j.compbiomed.2015.05.02026079199Search in Google Scholar

7. M. Scianna, C. G. Bell, and L. Preziosi, A review of mathematical models for the formation of vascular networks, J. Theor. Biol., vol. 333, pp. 174–209, 2013.10.1016/j.jtbi.2013.04.03723684907Search in Google Scholar

8. K. M. Burleson, M. P. Boente, S. E. Parmabuccian, and A. P. Skubitz, Disaggregation and invasion of ovarian carcinoma ascites spheroids, J. Transl. Med., vol. 4, pp. 1–16, 2006.10.1186/1479-5876-4-6139787616433903Search in Google Scholar

9. K. Shield, M. L. Ackland, N. Ahnmed, and G. E. Rice, Multicellular spheroids in ovarian cancer metastases: biology and pathology, Gynec. Oncol., vol. 113, pp. 143–148, 2008.10.1016/j.ygyno.2008.11.03219135710Search in Google Scholar

10. A. Colombi, M. Scianna, and L. Preziosi, Coherent modelling switch between pointwise and distributed representations of cell aggregates, J. Math. Biol., 2016, in press. doi: 10.1007/s00285-016-1042-0.Search in Google Scholar

11. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 4th ed. Garland Science, 2002.Search in Google Scholar

12. P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol. 407, pp. 249–257, 2000.10.1038/3502522011001068Search in Google Scholar

13. P. Carmeliet, Angiogenesis in life, disease and medicine, Nature, vol. 438, pp. 932–936, 2005.10.1038/nature04478Search in Google Scholar

14. M. Scianna and L. Preziosi, Multiscale developments of cellular potts models, Mult. Model. Sim., vol. 10, pp. 342–382, 2012.10.1137/100812951Search in Google Scholar

15. A. Colombi, M. Scianna, and A. Tosin, Di_erentiated cell behavior: a multiscale approach using measure theory, J. Math. Biol., 2015, in press. doi: 10.1007/s00285-014-0846-z.Search in Google Scholar

16. A. Colombi, M. Scianna, and L. Preziosi, A measure-theoretic model for collective cell migration and aggregation, Math. Model. Nat. Phenom., vol. 1, no. 10, pp. 32–63, 2015.10.1051/mmnp/201510101Search in Google Scholar

17. N. J. Armstrong, K. Painter, and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., vol. 243, pp. 98–113, 2006.10.1016/j.jtbi.2006.05.030Search in Google Scholar

18. N. J. Armstrong, K. Painter, and J. A. Sherratt, Adding adhesion to a chemical signaling model for somite formation, Bull. Math. Biol., vol. 71, pp. 1–24, 2009.10.1007/s11538-008-9350-1Search in Google Scholar

19. K. J. Painter, J. M. Bloom_eld, J. A. Sherratt, and A. Gerisch, A non-local model for contact attraction and repulsion in heterogeneous cell populations, Bull. Math. Biol., vol. 77, no. 2, pp. 1132–1165, 2015.Search in Google Scholar

20. H. S. Bell, I. R. Whittle, M. Walker, H. A. Leaver, and S. B. Wharton, The development of necrosis and apoptosis in glioma: experimental findings using spheroid culture systems, Neuropathol. Appl. Neurobiol., vol. 27, pp. 291–304, 2001.10.1046/j.0305-1846.2001.00319.xSearch in Google Scholar

21. M. L. Puiffe, C. L. Page, A. Filali-Mouhim, M. Zietarska, V. Ouellet, P. N. Toniny, M. Chevrette, D. M. Provencher, and A. M. Mes-Masson, Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer, Neoplasia, vol. 9, pp. 820–829, 2007.10.1593/neo.07472Search in Google Scholar

22. A. D. Luca, N. Arena, L. M. Sena, and E. Medico, Met overexpression confers hgf-dependent invasive phenotype to human thyroid carcinoma cells in vitro, J. Cell. Physiol., vol. 180, no. 3, pp. 365–371, 1999.10.1002/(SICI)1097-4652(199909)180:3<365::AID-JCP7>3.0.CO;2-BSearch in Google Scholar

23. M. F. D. Renzo, M. Oliviero, R. P. Narsimhan, S. Bretti, S. Giordano, E. Medico, P. Gaglia, P. Zara, and P. M. Comoglio, Expression of the met/hgf receptor in normal and neoplastic human tissues, Oncogene, vol. 6, pp. 1997–2003, 1991.Search in Google Scholar

24. J. M. Brown, Tumor microenvironment and the response to anticancer therapy, Cancer Biol. Ther., vol. 1, pp. 453–458, 2002.10.4161/cbt.1.5.157Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics