Open Access

Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. A. Sellitto, V. A. Cimmelli and D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems. Berlin: Springer, 2016. DOI 10.1007/978-3-319-27206-110.1007/978-3-319-27206-1Search in Google Scholar

2. G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of Extended Irreversible Thermodynamics, Journal of Non-Equilibrium Thermodynamics, vol. 39, pp. 35–59, 2014.10.1515/jnetdy-2013-0029Search in Google Scholar

3. J. Casas-Vázquez and D. Jou, Temperature in nonequilibrium states: a review of open problems and current proposals, Reports on Progress in Physics, vol. 66, pp. 1937–2023, 2003.Search in Google Scholar

4. V. A. Cimmelli and K. Frischmuth, Determination of material functions through second sound measurements in a hyperbolic heat conduction theory, Mathematical and Computer Modelling, vol. 24, pp. 19–28, 1996.10.1016/S0895-7177(96)00175-6Search in Google Scholar

5. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlocal effects and second sound in a nonequilibrium steady state, Physical Review B, vol. 79, p. 014303 (13 pages), 2009.Search in Google Scholar

6. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations, Physical Review B, vol. 81, p. 054301 (9 pages), 2010.Search in Google Scholar

7. V. A. Cimmelli, A. Sellitto, and D. Jou, Nonlinear evolution and stability of the heat flow in nanosystems: Beyond linear phonon hydrodynamics, Physical Review B, vol. 82, p. 184302 (9 pages), 2010.Search in Google Scholar

8. H. Struchtrup, Macroscopic transport equations for rarefied gas flows: approximation methods in kinetic theory - Interaction of Mechanics and Mathematics. New York: Springer, 2005.Search in Google Scholar

9. V. A. Cimmelli, A. Sellitto, and V. Triani, A new thermodynamic framework for second-grade Korteweg-type viscous fluids, Journal of Mathematical Physics, vol. 50, p. 053101 (16 pages), 2009.Search in Google Scholar

10. V. A. Cimmelli, D. Jou, T. Ruggeri, and P. Ván, Entropy Principle and Recent Results in Non-Equilibrium Theories, Entropy, vol. 16, pp. 1756–1807, 2014.Search in Google Scholar

11. P. Ván and T. Fülöp, “Universality in heat conduction theory: weakly nonlocal thermodynamics,” Annalen der Physik, vol. 524, pp. 470–478, 2012.10.1002/andp.201200042Search in Google Scholar

12. Z.-Y. Guo, Motion and Transfer of Thermal Mass - Thermal Mass and Thermon Gas, Journal of Engineering Thermophysics, vol. 27, pp. 631–634, 2006.Search in Google Scholar

13. B.-Y. Cao and Z.-Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction, Journal of Applied Physics, vol. 102, p. 053503 (6 pages), 2007.Search in Google Scholar

14. Z.-Y. Guo and Q.-W. Hou, Thermal wave based on the thermomass model, ASME Journal of Heat Transfer, vol. 132, p. 072403 (6 pages), 2010.Search in Google Scholar

15. D. Y. Tzou, Macro-to Microscale Heat Transfer: The Lagging Behaviour. United Kingdom: Wiley, second ed., 2014.Search in Google Scholar

16. D. Y. Tzou, Nonlocal behavior in phonon transport, International Journal of Heat and Mass Transfer, vol. 54, pp. 475–481, 2011.10.1016/j.ijheatmasstransfer.2010.09.022Search in Google Scholar

17. R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation, Physical Review, vol. 148, pp. 766–778, 1966.10.1103/PhysRev.148.766Search in Google Scholar

18. R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals, Physical Review, vol. 148, pp. 778–788, 1966.10.1103/PhysRev.148.778Search in Google Scholar

19. C. C. Ackerman and R. A. Guyer, Temperature pulses in dielectric solids, Annals of Physics, vol. 50, pp. 128–185, 1968.10.1016/0003-4916(68)90320-5Search in Google Scholar

20. V. A. Cimmelli and K. Frischmuth, Nonlinear effects in thermal wave propagation near zero absolute temperature, Physica B, vol. 355, pp. 147–157, 2005.10.1016/j.physb.2004.10.034Search in Google Scholar

21. V. A. Cimmelli and K. Frischmuth, Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction, Physica B, vol. 400, pp. 257–265, 2007.10.1016/j.physb.2007.07.019Search in Google Scholar

22. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer, fourth revised ed., 2010.10.1007/978-90-481-3074-0_2Search in Google Scholar

23. J. M. Ziman, Electrons and Phonons. Oxford: Oxford University Press, 2001.10.1093/acprof:oso/9780198507796.001.0001Search in Google Scholar

24. C. Cattaneo, Sulla conduzione del calore, Atti del Seminario Matematico e Fisico dell’Universitá di Modena, vol. 3, pp. 83–101, 1948.Search in Google Scholar

25. V. A. Cimmelli, Different thermodynamic theories and different heat conduction laws, Journal of Non-Equilibrium Thermodynamics, vol. 34, pp. 299–333, 2009.10.1515/JNETDY.2009.016Search in Google Scholar

26. B. Straughan, Heat waves. Berlin: Springer, 2011.10.1007/978-1-4614-0493-4Search in Google Scholar

27. G. Lebon, D. Jou, J. Casas-Vázquez, and W. Muschik, Weakly nonlocal and nonlinear heat transport in rigid solids, Journal of Non-Equilibrium Thermodynamics, vol. 23, pp. 176–191, 1998.10.1515/jnet.1998.23.2.176Search in Google Scholar

28. V. A. Cimmelli, An extension of Liu procedure in weakly nonlocal thermodynamics, Journal of Mathematical Physics, vol. 48, p. 113510 (13 pages), 2007.Search in Google Scholar

29. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics revisited (1988-1998), Reports on Progress in Physics, vol. 62, pp. 1035–1142, 1999.Search in Google Scholar

30. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding nonequilibrium thermodynamics. Berlin: Springer, 2008.10.1007/978-3-540-74252-4Search in Google Scholar

31. G. Lebon, H. Machrafi, M. Grmela, and C. Dubois, An extended thermodynamic model of transient heat conduction at sub-continuum scales, Proceedings of the Royal Society of London, Section A, vol. 467, pp. 3241–3256, 2011.Search in Google Scholar

32. F. X. Alvarez, D. Jou, and A. Sellitto, Phonon hydrodynamics and phonon-boundary scattering in nanosystems, Journal of Applied Physics, vol. 105, p. 014317 (5 pages), 2009.Search in Google Scholar

33. A. Sellitto, F. X. Alvarez, and D. Jou, Second law of thermodynamics and phonon-boundary conditions in nanowires, Journal of Applied Physics, vol. 107, p. 064302 (7 pages), 2010.Search in Google Scholar

34. A. Sellitto, F. X. Alvarez, and D. Jou, Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires, Journal of Applied Physics, vol. 107, p. 114312 (7 pages), 2010.Search in Google Scholar

35. F. X. Alvarez, D. Jou, and A. Sellitto, Phonon boundary effects and thermal conductivity of rough concentric nanowires, ASME Journal of Heat Transfer, vol. 133, p. 022402 (7 pages), 2011.Search in Google Scholar

36. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended irreversible thermodynamics of heat transport. A brief introduction, Proceedings of the Estonian Academy of Sciences, vol. 57, p. 118–126, 2008.10.3176/proc.2008.3.01Search in Google Scholar

37. M. Lundstrom, Fundamentals of Carrier Transport. Cambridge: Cambridge University Press, 2000.10.1017/CBO9780511618611Search in Google Scholar

38. D. Jou and L. Restuccia, Mesoscopic transport equations and contemporary thermodynamics: an introduction, Contemporary Physics, vol. 52, pp. 465–474, 2011.10.1080/00107514.2011.595596Search in Google Scholar

39. R. Luzzi, A. R. Vasconcellos, J. Casas-Vázquez, and D. Jou, Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics, Physica A, vol. 234, pp. 699–714, 1997.10.1016/S0378-4371(96)00303-2Search in Google Scholar

40. J. M. Criado-Sancho, D. Jou, and J. Casas-Vázquez, Nonequilibrium kinetic temperatures in flowing gases, Physics Letters A, vol. 350, pp. 339–341, 2006.10.1016/j.physleta.2005.10.043Search in Google Scholar

41. D. Jou, V. A. Cimmelli, and A. Sellitto, Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers, Physics Letters A, vol. 373, pp. 4386–4392, 2009.Search in Google Scholar

42. S. I. Serdyukov, Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics, Theoretical Foundations of Chemical Engineering, vol. 47, pp. 89–103, 2013.10.1134/S0040579513020085Search in Google Scholar

43. M. Ferrer and D. Jou, Higher-order fluxes and the speed of thermal waves, International Journal of Heat and Mass Transfer, vol. 34, pp. 3055–3060, 1991.Search in Google Scholar

44. V. A. Cimmelli and P. Ván, The effects of nonlocality on the evolution of higher order fluxes in nonequilibrium thermodynamics, Journal of Mathematical Physics, vol. 46, p. 112901 (15 pages), 2005.Search in Google Scholar

45. V. A. Cimmelli and W. Kosiński, Non-equilibrium semi-empirical temperature in materials with thermal relaxation, Archives of Mechanics, vol. 47, pp. 753–767, 1991.Search in Google Scholar

46. D. D. Joseph and L. Preziosi, Heat waves, Reviews in Modern Physics, vol. 61, pp. 41–73, 1989.10.1103/RevModPhys.61.41Search in Google Scholar

47. W. Dreyer and H. Struchtrup, Heat pulse experiments revisited, Continuum Mechanics and Thermodynamics, vol. 5, pp. 3–50, 1993.10.1007/BF01135371Search in Google Scholar

48. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. New York: Springer, second ed., 1998.10.1007/978-1-4612-2210-1Search in Google Scholar

49. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics, Journal of Applied Physics, vol. 110, p. 063504 (6 pages), 2011.Search in Google Scholar

50. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, General expression for entropy production in transport processes based on the thermomass model, Physical Review E, vol. 85, p. 061107 (8 pages), 2012.Search in Google Scholar

51. Y. Dong, B.-Y. Cao, and Z.-Y. Guo, Temperature in nonequilibrium states and non-Fourier heat conduction, Physical Review E, vol. 87, p. 032150 (8 pages), 2013.Search in Google Scholar

52. D. Y. Tzou and Z.-Y. Guo, Nonlocal behavior in thermal lagging, International Journal of Thermal Sciences, vol. 49, pp. 1133–1137, 2010.Search in Google Scholar

53. M. Wang, N. Yang, and Z.-Y. Guo, Non-Fourier heat conductions in nanomaterials, Journal of Applied Physics, vol. 110, p. 064310 (7 pages), 2011.Search in Google Scholar

54. A. Sellitto and V. A. Cimmelli, A continuum approach to thermomass theory, ASME Journal of Heat Transfer, vol. 134, p. 112402 (6 pages), 2012.Search in Google Scholar

55. A. Sellitto and V. A. Cimmelli, Flux limiters in radial heat transport in silicon nanolayers, ASME Journal of Heat Transfer, vol. 136, p. (8 pages), 2014.10.1115/1.4027183Search in Google Scholar

56. M. Wang, B.-Y. Cao, and Z.-Y. Guo, General heat conduction equations based on the thermomass theory, Frontiers in Heat and Mass Transfer, vol. 1, p. 013004 (8 pages), 2010.Search in Google Scholar

57. A. Sellitto, V. A. Cimmelli, and D. Jou, Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems, Physica D, vol. 241, pp. 1344–1350, 2012.Search in Google Scholar

58. D. Y. Tzou, A unified field approach for heat conduction from micro-to-macro-scales, ASME Journal of Heat Transfer, vol. 117, pp. 8–16, 1995.10.1115/1.2822329Search in Google Scholar

59. D. Y. Tzou, Longitudinal and transverse phonon transport in dielectric crystals, ASME Journal of Heat Transfer, vol. 136, p. 042401 (5 pages), 2014.Search in Google Scholar

60. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano. Boca Raton: CRC Press, 2005.Search in Google Scholar

61. D. M. Rowe (ed.), CRC Handbook of Thermoelectrics. Florida: Boca Raton: CRC Press LLC, 1995.Search in Google Scholar

62. F. Koechlin and B. Bonin, Parametrisation of the Niobium thermal conductivity in the superconducting state, in Proceedings of the 1995 Workshop on RF Superconductivity, Gif-sur-Yvette, France (B. Bonin, ed.), (New York), pp. 665–669, Gordon and Breach, 1996.Search in Google Scholar

63. K. E. Goodson and M. I. Flik, Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films, ASME Journal of Heat Transfer, vol. 115, pp. 17–25, 1993.10.1115/1.2910646Search in Google Scholar

64. N. Stojanovic, D. H. S. Maithripala, J. M. Berg, and M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law, Physical Review B, vol. 82, p. 075418 (9 pages), 2010.Search in Google Scholar

65. A. Sellitto, V. A. Cimmelli, and D. Jou, Thermoelectric effects and size dependency of the figure-of-merit in cylindrical nanowires, International Journal of Heat and Mass Transfer, vol. 57, pp. 109–116, 2013.10.1016/j.ijheatmasstransfer.2012.10.010Search in Google Scholar

66. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W. A. Goddard-III, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature, vol. 451, pp. 168–171, 2008.10.1038/nature0645818185583Search in Google Scholar

67. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys, Nano Letters, vol. 8, pp. 4670–4674, 2008.Search in Google Scholar

68. Z. M. Zhang, Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007.Search in Google Scholar

69. S. Volz (ed.), Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Berlin: Springer, 2010.10.1007/978-3-642-04258-4Search in Google Scholar

70. N. Balkan, Hot Electrons in Semiconductors - Physics and Devices. New York: Oxford University Press, 1998.Search in Google Scholar

71. G. Chen, Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford: Oxford University Press, 2005.Search in Google Scholar

72. B. D. Coleman and E. H. Dill, Thermodynamic restrictions on the constitutive equations of electromagnetic theory, Zeitschrift für angewandte Mathematik und Physik, vol. 22, pp. 691–702, 1971.10.1007/BF01587765Search in Google Scholar

73. Z. Lin, L. V. Zhigilei, and V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B, vol. 77, p. 075133 (17 pages), 2008.Search in Google Scholar

74. H. Gouin and T. Ruggeri, Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids, Physical Review E, vol. 78, p. 016303 (7 pages), 2008.Search in Google Scholar

75. T. Ruggeri and J. Lou, Heat conduction in multi-temperature mixtures of fluids: the role of the average temperature, Physics Letters A, vol. 373, pp. 3052–3055, 2009.Search in Google Scholar

76. T. Ruggeri, Multi-temperature mixture of fluids, Theoretical and Applied Mechanics, vol. 36, pp. 207–238, 2009.10.2298/TAM0903207RSearch in Google Scholar

77. L. X. Benedict, S. G. Louie, and M. L. Cohen, Heat capacity of carbon nanotubes, Solid State Communications, vol. 100, pp. 177–180, 1996.10.1016/0038-1098(96)00386-9Search in Google Scholar

78. G. Benenti, K. Saito, and G. Casati, Thermodynamic bounds on efficiency for systems with broken time-reversal symmetry, Physical Review Letters, vol. 106, p. 230602 (4 pages), 2011.Search in Google Scholar

79. S. J. Putterman, Superfluid Hydrodynamics. Amsterdam: North Holland, 1974.Search in Google Scholar

80. D. Benin and H. J. Maris, Phonon heat transport and Knudsen’s minimum in liquid helium at low temperatures, Physical Review B, vol. 18, pp. 3112–3125, 1978.Search in Google Scholar

81. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.Search in Google Scholar

82. D. Jou, G. Lebon, and M. S. Mongioví, Second sound, superfluid turbulence, and intermittent effects in liquid helium II, Physical Review B, vol. 66, p. 224509 (9 pages), 2002.Search in Google Scholar

83. J. Wilks, The properties of Liquid and Solid Helium. Oxford: Clarendon Press, 1967.10.1016/B978-0-08-012409-4.50007-3Search in Google Scholar

84. S. W. Van Sciver, Helium Cryogenics. Berlin: Springer, second ed., 2012.10.1007/978-1-4419-9979-5Search in Google Scholar

85. M. S. Mongioví, Extended Irreversible Thermodynamics of liquid helium II, Physical Review B, vol. 48, pp. 6276–6283, 1993.Search in Google Scholar

86. L. D. Landau, The theory of superfluidity of He II, Journal of Physics, vol. 60, pp. 356–358, 1941.10.1103/PhysRev.60.356Search in Google Scholar

87. D. S. Greywall, Thermal-conductivity measurements in liquid 4He below 0.7K, Physical Review B, vol. 23, pp. 2152–2168, 1981.Search in Google Scholar

88. L. D. Landau and E. M. Lishitz, Mechanics of fluids. Oxford: Pergamon, 1985.Search in Google Scholar

89. M. Sciacca, A. Sellitto, and D. Jou, Transition to ballistic regime for heat transport in helium II, Physics Letters A., vol. 378, pp. 2471–2477, 2014.Search in Google Scholar

90. M. S. Mongioví and D. Jou, Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence, Phys. Rev. B, vol. 75, p. 024507 (14 pages), 2007.Search in Google Scholar

91. M. Sciacca, M. S. Mongioví, and D. Jou, A mathematical model of counterflow superfluid turbulence describing heat waves and vortex-density waves, Mathematical and Computer Modelling, vol. 48, pp. 206–221, 2008.10.1016/j.mcm.2007.09.007Search in Google Scholar

92. L. Saluto, M. S. Mongioví, and D. Jou, Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component, Zeitschrift für angewandte Mathematik und Physik, vol. 65, pp. 531–548, 2014.10.1007/s00033-013-0372-7Search in Google Scholar

93. F. X. Alvarez, J. Alvarez-Quintana, D. Jou, and J. Rodriguez-Viejo, Analytical expression for thermal conductivity of superlattices, Journal of Applied Physics, vol. 107, p. 084303 (8 pages), 2010.Search in Google Scholar

94. T. C. H. P. J. Taylor, M. P. Walsh, and B. E. La Forge, Quantum dot superlattice thermoelectric materials and devices, Science, vol. 297, pp. 2229–2232, 2002.Search in Google Scholar

95. O. L. Lazarenkova and A. A. Balandin, Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlattice, Physical Review B, vol. 66, p. 245319 (9 pages), 2002.Search in Google Scholar

96. A. A. Balandin and O. L. Lazarenkova, Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices, Nature Materials, vol. 82, p. 415 (3 pages), 2003.10.1063/1.1539905Search in Google Scholar

97. J. Alvarez-Quintana, F. X. Alvarez, J. Rodriguez-Viejo, D. Jou, P. D. Lacharmoise, A. Bernardi, A. R. Goñi, and M. I. Alonso, Cross-plane thermal conductivity reduction of vertically uncorrelated Ge/Si quantum dot superlattices, Applied Physics Letters, vol. 93, p. 013112 (3 pages), 2008.Search in Google Scholar

98. A. Sellitto, A phonon-hydrodynamic approach to thermal conductivity of Si-Ge quantum dot superlattices, Applied Mathematical Modelling, vol. 39, pp. 4687–4698, 2015.Search in Google Scholar

99. V. Birman and L. W. Byrd, Modeling and Analysis of Functionally Graded Materials and Structures, Applied Mechanics Reviews, vol. 60, pp. 197–216, 2007.10.1115/1.2777164Search in Google Scholar

100. V. L. Kuznetsov, Functionally graded materials for termoelectric applications, in Thermoelectrics Handbook: Macro to Nano – Sec. 38, D. M. Rowe Ed., CRC Press, Boca Raton, 2005.10.1201/9781420038903.ch38Search in Google Scholar

101. V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe, High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation, Journal of Materials Science, vol. 37, pp. 2893–2897, 2002.Search in Google Scholar

102. E. Müller, Č. Drašar, J. Schilz, and W. A. Kaysser, Functionally graded materials for sensor and energy applications, Materials Science and Engineering, vol. A362, pp. 17–39, 2003.10.1016/S0921-5093(03)00581-1Search in Google Scholar

103. G. Jeffrey Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials, vol. 7, pp. 105–114, 2008.10.1038/nmat209018219332Search in Google Scholar

104. D. Jou, I. Carlomagno, and V. A. Cimmelli, A thermodynamic model for heat transport and thermal wave propagation in graded systems, Physica E, vol. 73, pp. 242–249, 2015.10.1016/j.physe.2015.05.026Search in Google Scholar

105. A. Sellitto, V. A. Cimmelli, and D. Jou, Entropy flux and anomalous axial heat transport at the nanoscale, Physical Review B, vol. 87, p. 054302 (7 pages), 2013.Search in Google Scholar

106. V. A. Cimmelli, I. Carlomagno, and A. Sellitto, Non-Fourier heat transfer with phonons and electrons in a circular thin layer surrounding a hot nanodevice, Entropy, vol. 17, pp. 5157–5170, 2015.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics