Open Access

Thermal rectification based on phonon hydrodynamics and thermomass theory

   | May 20, 2016
Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Solid-state thermal rectifier, Science, vol. 314, no. 5802, pp. 1121–1124, 2006.Search in Google Scholar

2. L. Wang and B. Li, Thermal memory: a storage of phononic information, Physical Review Letters, vol. 101, no. 26, p. 267203, 2008.Search in Google Scholar

3. G. Wu and B. Li, Thermal rectifiers from deformed carbon nanohorns, Journal of Physics: Condensed Matter, vol. 20, no. 17, p. 175211, 2008.Search in Google Scholar

4. M. Criado-Sancho, L. del Castillo, J. Casas-Vazquez, and D. Jou, Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device, Physics Letters A, vol. 376, no. 19, pp. 1641–1644, 2012.Search in Google Scholar

5. N. Yang, G. Zhang, and B. Li, Carbon nanocone: a promising thermal rectifier, Applied Physics Letters, vol. 93, no. 24, p. 243111, 2008.Search in Google Scholar

6. W. Kobayashi, Y. Teraoka, and I. Terasaki, An oxide thermal rectifier, Applied Physics Letters, vol. 95, no. 17, p. 171905, 2009.Search in Google Scholar

7. N. Yang, G. Zhang, and B. Li, Thermal rectification in asymmetric graphene ribbons, Applied Physics Letters, vol. 95, no. 3, p. 033107, 2009.Search in Google Scholar

8. C. R. Otey, W. T. Lau, and S. Fan, Thermal rectification through vacuum, Physical Review Letters, vol. 104, no. 15, p. 154301, 2010.Search in Google Scholar

9. M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, A thermal diode using phonon rectification, New Journal of Physics, vol. 13, no. 11, p. 113027, 2011.Search in Google Scholar

10. S. H. Ju and X. G. Liang, Thermal rectification and phonon scattering in asymmetric silicon nanoribbons, Journal of Applied Physics, vol. 112, no. 2, p. 024307, 2012.Search in Google Scholar

11. S. H. Ju and X. G. Liang, Thermal rectification and phonon scattering in silicon nanofilm with cone cavity, Journal of Applied Physics, vol. 112, no. 5, p. 054312, 2012.Search in Google Scholar

12. M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals, Physical Review Letters, vol. 110, no. 2, p. 025902, 2013.Search in Google Scholar

13. R. Chen, A. I. Hochbaum, P. Murphy, and A. Majumdar, Thermal conductance of thin silicon nanowires, Physical Review Letters, vol. 101, no. 10, p. 105501, 2008.Search in Google Scholar

14. A. Majumdar, Microscale heat conduction in dielectric thin films, Journal of Heat Transfer, vol. 115, no. 1, pp. 7–16, 1993.10.1115/1.2910673Search in Google Scholar

15. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, Physical Review B, vol. 57, no. 23, p. 14958, 1998.Search in Google Scholar

16. R. Yang and G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Physical Review B, vol. 69, no. 19, p. 195316, 2004.Search in Google Scholar

17. A. J. H. McGaughey, E. S. Landry, D. P. Sellan, and et al., Size-dependent model for thin film and nanowire thermal conductivity, Applied Physics Letters, vol. 99, no. 13, p. 131904, 2011.Search in Google Scholar

18. R. A. Guyer and J. A. Krumhansl, Solution of the linearized phonon boltzmann equation, Physical Review, vol. 148, no. 2, p. 766, 1966.10.1103/PhysRev.148.766Search in Google Scholar

19. R. A. Guyer and J. A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals, Physical Review, vol. 148, no. 2, p. 778, 1966.10.1103/PhysRev.148.778Search in Google Scholar

20. M. Asheghi, M. Toulzebaev, K. Goodson, Y. Leung, and S. Wong, Temperature-dependent thermal conductivity of single-crystal silicon layers in soi substrates, Journal of Heat Transfer, vol. 120, no. 1, pp. 30–36, 1998.10.1115/1.2830059Search in Google Scholar

21. Y. Ju and K. Goodson, Phonon scattering in silicon films with thickness of order 100 nm, Applied Physics Letters, vol. 74, no. 20, pp. 3005–3007, 1999.Search in Google Scholar

22. W. Liu and M. Asheghi, Phonon boundary scattering in ultrathin single-crystal silicon layers, Applied Physics Letters, vol. 84, no. 19, pp. 3819–3821, 2004.Search in Google Scholar

23. Y. Ju, Phonon heat transport in silicon nanostructures, Applied Physics Letters, vol. 87, no. 15, p. 153106, 2005.Search in Google Scholar

24. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Applied Physics Letters, vol. 83, no. 14, pp. 2934–2936, 2003.Search in Google Scholar

25. A. Sellitto, F. Alvarez, and D. Jou, Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires, International Journal of Heat and Mass Transfer, vol. 55, no. 11, pp. 3114–3120, 2012.Search in Google Scholar

26. A. Sellitto, F. Alvarez, and D. Jou, Phonon hydrodynamics and phonon-boundary scattering in nanosystems, Journal of Applied Physics, vol. 105, no. 1, p. 014317, 2009.Search in Google Scholar

27. F. X. Alvarez, D. Jou, and A. Sellitto, Second law of thermodynamics and phonon-boundary conditions in nanowires, Journal of Applied Physics, vol. 107, no. 6, p. 064302, 2010.Search in Google Scholar

28. Y. Dong, B. Y. Cao, and Z. Guo, Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics, Journal of Applied Physics, vol. 110, no. 6, p. 063504, 2011.Search in Google Scholar

29. M. Wang and Z. Y. Guo, Understanding of temperature and size dependences of effective thermal conductivity of nanotubes, Physics Letters A, vol. 374, no. 42, pp. 4312–4315, 2010.Search in Google Scholar

30. M. Wang, N. Yang, and Z. Y. Guo, Non-fourier heat conductions in nanomaterials, Journal of Applied Physics, vol. 110, no. 6, p. 064310, 2011.Search in Google Scholar

31. Y. Dong, B. Y. Cao, and Z. Guo, Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics, Physica E: Low-dimensional Systems and Nanostructures, vol. 56, pp. 256–262, 2014.10.1016/j.physe.2013.10.006Search in Google Scholar

32. J. M. Ziman, Electrons and phonons,. Oxford: Oxford University Press, 2001.10.1093/acprof:oso/9780198507796.001.0001Search in Google Scholar

33. Y. Ma, Size-dependent thermal conductivity in nanosystems based on non-fourier heat transfer, Applied Physics Letters, vol. 101, no. 21, p. 211905, 2012.Search in Google Scholar

34. C. de Tomas, A. Cantarero, A. F. Lopeandia, and F. X. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures, Journal of Applied Physics, vol. 115, no. 16, p. 164314, 2014.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics