Cite

Crosiers D, Theuns J, Cras P, Van Broeckhoven C. Parkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypes. J Chem Neuroanat. 2011; 42(2): 131-141.CrosiersDTheunsJCrasPVan BroeckhovenCParkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypesJ Chem Neuroanat201142213114110.1016/j.jchemneu.2011.07.003Search in Google Scholar

Ross CA, Tabrizi SJ. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011; 10(1): 83-98.RossCATabriziSJHuntington’s disease: From molecular pathogenesis to clinical treatmentLancet Neurol2011101839810.1016/S1474-4422(10)70245-3Search in Google Scholar

Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001; 24: 299-325.StewardOSchumanEMProtein synthesis at synaptic sites on dendritesAnnu Rev Neurosci20012429932510.1007/978-0-387-30379-6_4Search in Google Scholar

Martin KC, Ephrussi A. mRNA localization: Gene expression in the spatial dimension. Cell. 2009; 136(4): 719-730.MartinKCEphrussiAmRNA localization: Gene expression in the spatial dimensionCell2009136471973010.1016/j.cell.2009.01.044Search in Google Scholar

Jiang C, Schuman EM. Regulation and function of local protein synthesis in neuronal dendrites. Trends Biochem Sci. 2002; 27(10): 506-513.JiangCSchumanEMRegulation and function of local protein synthesis in neuronal dendritesTrends Biochem Sci2002271050651310.1016/S0968-0004(02)02190-4Search in Google Scholar

Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, et al. Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: A function for local protein synthesis in memory storage. Cell. 1997; 91(7): 927-938.MartinKCCasadioAZhuHYapingERoseJCChenMSynapse-specific, long-term facilitation of aplysia sensory to motor synapses: A function for local protein synthesis in memory storageCell199791792793810.1016/S0092-8674(00)80484-5Search in Google Scholar

Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci. 2004; 5(12): 931-942.KlannEDeverTEBiochemical mechanisms for translational regulation in synaptic plasticityNat Rev Neurosci200451293194210.1038/nrn1557Search in Google Scholar

Schratt G. MicroRNAs at the synapse. Nat Rev Neurosci. 2009; 10(12): 842-849.SchrattGMicroRNAs at the synapse. Nat Rev Neurosci2009101284284910.1038/nrn2763Search in Google Scholar

Richter JD, Klann E. Making synaptic plasticity and memory last: Mechanisms of translational regulation. Genes Dev. 2009; 23(1): 1-11.RichterJDKlannEMaking synaptic plasticity and memory last: Mechanisms of translational regulationGenes Dev200923111110.1101/gad.1735809Search in Google Scholar

Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron. 1998; 21(5): 11291139.WuLWellsDTayJMendisDAbbottMABarnittACPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapsesNeuron19982151129113910.1016/S0896-6273(00)80630-3Search in Google Scholar

Li LB, Bonini NM. Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci. 2010; 33(6): 292-298.LiLBBoniniNMRoles of trinucleotide-repeat RNA in neurological disease and degenerationTrends Neurosci201033629229810.1016/j.tins.2010.03.004572013620398949Search in Google Scholar

Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006; 29: 259-277.RanumLPCooperTARNA-mediated neuromuscular disordersAnnu Rev Neurosci20062925927710.1146/annurev.neuro.29.051605.11301416776586Search in Google Scholar

Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: Mechanisms and common principles. Nat Rev Genet. 2005; 6(10): 743-755.GatchelJRZoghbiHYDiseases of unstable repeat expansion: Mechanisms and common principlesNat Rev Genet200561074375510.1038/nrg169116205714Search in Google Scholar

Li LB, Yu Z, Teng X, Bonini NM. RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature. 2008; 453(7198): 1107-1111.LiLBYuZTengXBoniniNMRNA toxicity is a component of ataxin-3 degeneration in DrosophilaNature200845371981107111110.1038/nature06909257463018449188Search in Google Scholar

Sobczak K, de Mezer M, Michlewski G, Krol J, Krzyzosiak WJ. RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res. 2003; 31(19): 54695482.SobczakKde MezerMMichlewskiGKrolJKrzyzosiakWJRNA structure of trinucleotide repeats associated with human neurological diseasesNucleic Acids Res200331195469548210.1093/nar/gkg76620646614500809Search in Google Scholar

Sobczak K, Krzyzosiak WJ. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem. 2005; 280(5): 3898-3910.SobczakKKrzyzosiakWJCAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcriptsJ Biol Chem200528053898391010.1074/jbc.M40998420015533937Search in Google Scholar

Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet. 2011; 7(3): e1001340. 10.1371/journalpgen.1001340.YuZTengXBoniniNMTriplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophyPLoS Genet201173e100134010.1371/journalpgen.100134010.1371/journal.pgen.1001340306007321437269Search in Google Scholar

Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, et al. Recruitment of human muscleblind proteins to (CUG) (n) expansions associated with myotonic dystrophy. EMBO J. 2000; 19(17): 4439-4448.MillerJWUrbinatiCRTeng-UmnuayPStenbergMGByrneBJThorntonCARecruitment of human muscleblind proteins to (CUG) (n) expansions associated with myotonic dystrophyEMBO J200019174439444810.1093/emboj/19.17.443930204610970838Search in Google Scholar

Bushati N, Cohen SM. MicroRNAs in neurodegeneration. Curr Opin Neurobiol. 2008; 18(3): 292-296.BushatiNCohenSMMicroRNAs in neurodegenerationCurr Opin Neurobiol200818329229610.1016/j.conb.2008.07.00118662781Search in Google Scholar

Hébert SS, De Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009; 32(4): 199-206.HébertSSDe StrooperB.Alterations of the microRNA network cause neurodegenerative diseaseTrends Neurosci200932419920610.1016/j.tins.2008.12.00319268374Search in Google Scholar

Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009; 136(2): 215-233.BartelDPMicroRNAs: Target recognition and regulatory functions. Cell2009136221523310.1016/j.cell.2009.01.002379489619167326Search in Google Scholar

Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by micro-RNAs: Are the answers in sight? Nat Rev Genet. 2008; 9(2): 102-114.FilipowiczWBhattacharyyaSNSonenbergNMechanisms of post-transcriptional regulation by micro-RNAs: Are the answers in sight?Nat Rev Genet20089210211410.1038/nrg229018197166Search in Google Scholar

Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: MicroRNAs can up-regulate translation. Science. 2007; 318(5858): 1931-1934.VasudevanSTongYSteitzJASwitching from repression to activation: MicroRNAs can up-regulate translationScience200731858581931193410.1126/science.114946018048652Search in Google Scholar

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005; 37(5): 495-500.KrekAGrünDPoyMNWolfRRosenbergLEpsteinEJCombinatorial microRNA target predictionsNat Genet200537549550010.1038/ng153615806104Search in Google Scholar

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1): 15-20.LewisBPBurgeCBBartelDPConserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsCell20051201152010.1016/j.cell.2004.12.03515652477Search in Google Scholar

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129(7): 1401-1414.LandgrafPRusuMSheridanRSewerAIovinoNAravinAA mammalian microRNA expression atlas based on small RNA library sequencingCell200712971401141410.1016/j.cell.2007.04.040268123117604727Search in Google Scholar

Sethupathy P, Collins FS. MicroRNA target site polymorphisms and human disease. Trends Genet. 2008; 24(10): 489-497.SethupathyPCollinsFSMicroRNA target site polymorphisms and human diseaseTrends Genet2008241048949710.1016/j.tig.2008.07.00418778868Search in Google Scholar

Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008; 17(23): 36313642.RademakersREriksenJLBakerMRobinsonTAhmedZLincolnSJCommon variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementiaHum Mol Genet200817233631364210.1093/hmg/ddn257258143318723524Search in Google Scholar

Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008; 82(2): 283-289.WangGvan der WaltJMMayhewGLiYJZüchnerSScottWKVariation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synucleinAm J Hum Genet200882228328910.1016/j.ajhg.2007.09.021242722518252210Search in Google Scholar

Orr HT, Zoghbi HY. Trinucleotide repeat disorders. Annu Rev Neurosci. 2007; 30: 575-621.OrrHTZoghbiHYTrinucleotide repeat disordersAnnu Rev Neurosci20073057562110.1146/annurev.neuro.29.051605.11304217417937Search in Google Scholar

Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell. 2006; 24(1): 157-163.BilenJLiuNBurnettBGPittmanRNBoniniNMMicroRNA pathways modulate polyglutamine-induced neurodegenerationMol Cell200624115716310.1016/j.molcel.2006.07.03017018300Search in Google Scholar

Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007; 204(7): 1553-1558.SchaeferAO’CarrollDTanCLHillmanDSugimoriMLlinasRCerebellar neurodegeneration in the absence of microRNAsJ Exp Med200720471553155810.1084/jem.20070823211865417606634Search in Google Scholar

Kim JM, Hong S, Kim GP, Choi YJ, Kim YK, Park SS, et al. Importance of low-range CAG expansion and CAA interruption in SCA2 Parkinsonism. Arch Neurol. 2007; 64(10): 15101518.KimJMHongSKimGPChoiYJKimYKParkSSImportance of low-range CAG expansion and CAA interruption in SCA2 ParkinsonismArch Neurol200764101510151810.1001/archneur.64.10.151017923635Search in Google Scholar

Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell. 2007; 131(1): 136-145.KarresJSHilgersVCarreraITreismanJCohenSMThe conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in DrosophilaCell2007131113614510.1016/j.cell.2007.09.02017923093Search in Google Scholar

Waerner T, Gardellin P, Pfizenmaier K, Weith A, Kraut N. Human RERE is localized to nuclear promyelocytic leukemia oncogenic domains and enhances apoptosis. Cell Growth Differ. 2001; 12(4): 201-210.WaernerTGardellinPPfizenmaierKWeithAKrautNHuman RERE is localized to nuclear promyelocytic leukemia oncogenic domains and enhances apoptosisCell Growth Differ2001124201210Search in Google Scholar

Wells RD, Ashizawa T, Eds. Genetic Instabilities and Neurological Diseases, 2nd ed. Burlington, MA: Academic Press, 2006.WellsRDAshizawaTGenetic Instabilities and Neurological Diseases2nd edBurlington, MAAcademic Press2006Search in Google Scholar

Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD. Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem. 2001; 276(29): 27171-27177.SakamotoNOhshimaKMonterminiLPandolfoMWellsRDSticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene inhibits transcriptionJ Biol Chem200127629271712717710.1074/jbc.M10187920011340071Search in Google Scholar

Marsh JL, Walker H, Theisen H, Zhu YZ, Fielder T, Purcell J. et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum Mol Genet. 2000; 9(1): 13-25.MarshJLWalkerHTheisenHZhuYZFielderTPurcellJExpanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in DrosophilaHum Mol Genet200091132510.1093/hmg/9.1.1310587574Search in Google Scholar

Todd PK, Paulson HL. RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol. 2010; 67(3): 291-300.ToddPKPaulsonHLRNA-mediated neurodegeneration in repeat expansion disordersAnn Neurol201067329130010.1002/ana.21948285218620373340Search in Google Scholar

Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001; 293(5531): 864-867.LiquoriCLRickerKMoseleyMLJacobsenJFKressWNaylorSLMyotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9Science2001293553186486710.1126/science.106212511486088Search in Google Scholar

Pascual M, Vicente M, Monferrer L, Artero R. The Muscleblind family of proteins: An emerging class of regulators of developmentally programmed alternative splicing. Differentiation. 2006; 74(2-3): 65-80.PascualMVicenteMMonferrerLArteroRThe Muscleblind family of proteins: An emerging class of regulators of developmentally programmed alternative splicingDifferentiation2006742-3658010.1111/j.1432-0436.2006.00060.x16533306Search in Google Scholar

Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M, et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet. 2001; 10(19): 2165-2170.MankodiAUrbinatiCRYuanQPMoxleyRTSansoneVKrymMMuscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2Hum Mol Genet200110192165217010.1093/hmg/10.19.216511590133Search in Google Scholar

Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, et al. Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron. 2007; 55(4): 556-564.JinPDuanRQurashiAQinYTianDRosserTCPur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndromeNeuron200755455656410.1016/j.neuron.2007.07.020199481717698009Search in Google Scholar

Timchenko LT, Miller JW, Timchenko NA, De-Vore DR, Datar KV, Lin L, et al. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res. 1996; 24(22): 4407-4414.TimchenkoLTMillerJWTimchenkoNADe-VoreDRDatarKVLinLIdentification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophyNucleic Acids Res199624224407441410.1093/nar/24.22.44071462748948631Search in Google Scholar

White MC, Gao R, Xu W, Mandal SM, Lim JG, Hazra TK, et al. Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet. 2010; 6(6): e1000984. 10.1371/journal.pgen. 1000984.WhiteMCGaoRXuWMandalSMLimJGHazraTKInactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10PLoS Genet201066e100098410.1371/journal.pgen. 100098410.1371/journal.pgen.1000984288359620548952Search in Google Scholar

Daughters RS, Tuttle DL, Gao W, Ikeda Y, Moseley ML, Ebner TJ, et al. RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet. 2009; 5(8): e1000600. 10.1371/journal. pgen.1000600.DaughtersRSTuttleDLGaoWIkedaYMoseleyMLEbnerTJRNA gain-of-function in spinocerebellar ataxia type 8PLoS Genet200958e100060010.1371/journal. pgen.100060010.1371/journal.pgen.1000600271909219680539Search in Google Scholar

Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J. 2010; 29(7): 1248-1261.SellierCRauFLiuYTassoneFHukemaRKGattoniRSam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patientsEMBO J20102971248126110.1038/emboj.2010.21285746420186122Search in Google Scholar

Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington’s disease--like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol. 2007; 61(3): 272-282.RudnickiDDHolmesSELinMWThorntonCARossCAMargolisRLHuntington’s disease--like 2 is associated with CUG repeat-containing RNA fociAnn Neurol200761327228210.1002/ana.2108117387722Search in Google Scholar

Batra R, Charizanis K, Swanson MS. Partners in crime: Bidirectional transcription in unstable microsatellite disease. Hum Mol Genet. 2010; 19(R1): R77-R82.BatraRCharizanisKSwansonMSPartners in crime: Bidirectional transcription in unstable microsatellite diseaseHum Mol Genet201019R1R77R8210.1093/hmg/ddq132287505420368264Search in Google Scholar

Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA. 2011; 108(1): 260-265.ZuTGibbensBDotyNSGomes-PereiraMHuguetAStoneMDNon-ATG-initiated translation directed by microsatellite expansionsProc Natl Acad Sci USA2011108126026510.1073/pnas.1013343108301712921173221Search in Google Scholar

van Eyk CL, McLeod CJ, O’Keefe LV, Richards RI. Comparative toxicity of polyglutamine, polyalanine and polyleucine tracts in Drosophila models of expanded repeat disease. Hum Mol Genet. 2012; 21(3): 536-547.van EykCLMcLeodCJO’KeefeLVRichardsRIComparative toxicity of polyglutamine, polyalanine and polyleucine tracts in Drosophila models of expanded repeat diseaseHum Mol Genet201221353654710.1093/hmg/ddr48722021427Search in Google Scholar

Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002; 59(7): 1077-1079.Lomen-HoerthCAndersonTMillerBThe overlap of amyotrophic lateral sclerosis and frontotemporal dementiaNeurology20025971077107910.1212/WNL.59.7.107712370467Search in Google Scholar

La Spada AR, Taylor JP. Repeat expansion disease: Progress and puzzles in disease pathogenesis. Nat Rev Genet. 2010; 11(4): 247-258.La SpadaARTaylorJPRepeat expansion disease: Progress and puzzles in disease pathogenesisNat Rev Genet201011424725810.1038/nrg2748470468020177426Search in Google Scholar

Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, et al. Pathological TDP43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007; 61(5): 427-434.MackenzieIRBigioEHIncePGGeserFNeumannMCairnsNJPathological TDP43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutationsAnn Neurol200761542743410.1002/ana.2114717469116Search in Google Scholar

Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: Consensus recommendations. Acta Neuropathol. 2009; 117(1): 15-18.MackenzieIRNeumannMBigioEHCairnsNJAlafuzoffIKrilJNomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: Consensus recommendationsActa Neuropathol20091171151810.1007/s00401-008-0460-5271087719015862Search in Google Scholar

Boxer AL, Mackenzie IR, Boeve BF, Baker M, Seeley WW, Crook R, et al. Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family. J Neurol Neurosurg Psychiatry. 2011; 82(2): 196-203.BoxerALMackenzieIRBoeveBFBakerMSeeleyWWCrookRClinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS familyJ Neurol Neurosurg Psychiatry201182219620310.1136/jnnp.2009.204081301722220562461Search in Google Scholar

van Es MA, Veldink JH, Saris CG, Blauw HM, van Vught PW, Birve A, et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet. 2009; 41(10): 1083-1087.van EsMAVeldinkJHSarisCGBlauwHMvan VughtPWBirveAGenome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosisNat Genet200941101083108710.1038/ng.44219734901Search in Google Scholar

Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010; 42(3): 234-239.Van DeerlinVMSleimanPMMartinez-LageMChen-PlotkinAWangLSGraff-RadfordNRCommon variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusionsNat Genet201042323423910.1038/ng.536282852520154673Search in Google Scholar

Arocena DG, Iwahashi CK, Won N, Beilina A, Ludwig AL, Tassone F, et al. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum Mol Genet. 2005; 14(23): 3661-3671.ArocenaDGIwahashiCKWonNBeilinaALudwigALTassoneFInduction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cellsHum Mol Genet200514233661367110.1093/hmg/ddi39416239243Search in Google Scholar

eISSN:
1311-0160
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, other