Cite

[1] Kalač, P. (2013), A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture 93, 209–18.10.1002/jsfa.5960Search in Google Scholar

[2] Kalač, P. (2010), Trace element contents in European species of wild growing mushrooms: A review for the period 2000–2009, Food Chemistry 122, 2–15.10.1016/j.foodchem.2010.02.045Search in Google Scholar

[3] Kułdo, E., Jarzyńska, G., Gucia, M., Falandysz, J. (2014), Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chemical papers 68, 484–492.10.2478/s11696-013-0477-7Search in Google Scholar

[4] Severoglu, Z., Sumer, S., Yalcin, B., Leblebici, Z., Aksoy, A. (2013), Trace metal levels in edible wild fungi. International Journal of Science and Technology 10, 295–304.10.1007/s13762-012-0139-2Search in Google Scholar

[5] Giannacini, G., Betti, L., Palego, L., Mascia, G., Schmid, L., Lanza, M., Mela, A., Fabbrini, L., Biondi, L., Lucacchini, A. (2012), The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environmental Monitoring and Assessment 184, 7579–7595.10.1007/s10661-012-2520-5Search in Google Scholar

[6] Sesli, E., Tuzen, M., Soylak, M. (2008), Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. Journal of Hazardous Materials 160, 462–567.10.1016/j.jhazmat.2008.03.020Search in Google Scholar

[7] Kalač, P., Svoboda, L. (2000), A review of trace element concentrations in edible mushrooms. Food Chemistry 69, 273–281.10.1016/S0308-8146(99)00264-2Search in Google Scholar

[8] Radulescu, C., Stihi, C., Busuioc, G., Gheboianu, A. I., Popescu, I. V. (2010), Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bulletin of Environmental Contamination and Toxicology 84, 641–646.10.1007/s00128-010-9976-120405104Search in Google Scholar

[9] Çayir, A., Coşkun, M., Coşkun, M. (2010), The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biological Trace Element Research 134, 212–219.10.1007/s12011-009-8464-019618133Search in Google Scholar

[10] Chen, X. H., Zhou, H. B. Qiu, G. Z. (2009), Analysis of several heavy metals in wild edible mushrooms from regions of China. Bulletin of Environmental Contamination and Toxicology 83, 280–285.10.1007/s00128-009-9767-819452115Search in Google Scholar

[11] Tüzen, M., Özdemir, M. Demirbaş, A. (1998), Study of heavy metals in some cultivated and uncultivated mushrooms of Turkish origin. Food Chemistry 63, 247–251.10.1016/S0308-8146(97)00225-2Search in Google Scholar

[12] Alonso, J., García, M. A., Pérez-López, M., Melgar, M. J. (2003), The concentration and bioaccumulation factor of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology 44, 180–188.10.1007/s00244-002-2051-0Search in Google Scholar

[13] Demirbaş, A. (2001), Concentration of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chemistry 75, 453–457.10.1016/S0308-8146(01)00236-9Search in Google Scholar

[14] Busuioc, G., Elekes C. C., Stihi, C., Iordache S., Ciulei, S. C. (2011), The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environmental Science and Pollution Research 18, 890–896.10.1007/s11356-011-0446-zSearch in Google Scholar

[15] Falandysz, J., Drewnowska, M., Jarzyńska, G., Zhang, D., Zhang, Y., Wang, J. (2012), Mineral constituents in common chanterelles and soils collected from a high mountain and lowland sites in Poland. Journal of Mountain Science 9, 697–705.10.1007/s11629-012-2381-ySearch in Google Scholar

[16] García, M. A., Alonso, J., Fernández, M. I., Melgar, M. J. (1998), Lead content in edible wild mushrooms in northwest Spain as indicator of environmental contamination. Archives of Environmental Contamination and Toxicology 34, 330–335.10.1007/s002449900326Search in Google Scholar

[17] Krichner, G., Daillant, O. (1998), Accumulation of 210Pb and 226Ra and radioactive cesium by fungi. Science of the Total Environment 222, 63–70.10.1016/S0048-9697(98)00288-5Search in Google Scholar

[18] Vetter, J. (2004), Arsenic content of some edible mushroom species. European Food Research and Technology 219, 71–74.10.1007/s00217-004-0905-6Search in Google Scholar

[19] Cocchi, L., Vescovi, L., Petrini, L. E., Petrini, O. (2006), Heavy metals in edible mushrooms in Italy. Food Chemistry 98, 277–284.10.1016/j.foodchem.2005.05.068Search in Google Scholar

[20] Petkovšek, S. A. S., Pokorny, B. (2013), Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Science of the Total Environment 443, 944–954.10.1016/j.scitotenv.2012.11.00723253939Search in Google Scholar

[21] Olumuyiwa, S. F., Oluwatoyin, O. A., Olanrewaja O., Steve R. A. (2007), Chemical composition and toxic trace element composition of some Nigerian edible wild mushroom. International Journal of Science and Technology 43, 24–29.Search in Google Scholar

[22] Svoboda, L., Zimmermannivá, K., Kalač, P. (2000), Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. The Science of the Total Environment 246, 61–67.10.1016/S0048-9697(99)00411-8Search in Google Scholar

[23] Schlecht, M. T., Säumel, I. (2015), Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin, Germany. Environmental Pollution 204, 298–305.10.1016/j.envpol.2015.05.01826016949Search in Google Scholar

[24] Brânzan, T. (2013), Catalogul habitatelor, speciilor și siturilor Natura 2000 în România. Ed. Fundația Centrul Național pentru Dezvoltare Durabilă, București.Search in Google Scholar

[25] Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., Canniatti-Brazaca, S. G. (2011), Heavy metals in vegetables and potential risk for human health. Scientia Agricola 69, 54–60.10.1590/S0103-90162012000100008Search in Google Scholar

[26] US EPA (2013), Reference dose (RfD): Description and use in health risk assessments, Background Document 1A, Integrated risk information system (IRIS); United States Environmental Protection Agency: Washington, DC, 15 March 2013; http://wwwepa.gov/iris/rfd.htm.Search in Google Scholar

[27] IRIS, USEPA, http://cfpub.epa.gov/ncea/iris/index.cfm?fuseaction=iris.showSubstanceListSearch in Google Scholar

[28] EFSA Journal (2012), Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured. European Food Safety Authority Journal 10, 2579.Search in Google Scholar

[29] Wang, X. M., Zhang, J., Li, T., Wang, Y. Z., Liu, H. G. (2015), Content and bioaccumulation of nine mineral elements in ten mushroom species of the genus Boletus. Journal of Analytical Methods in Chemistry 2015, 1–7.Search in Google Scholar

eISSN:
2068-2964
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other