Open Access

Parametric Study of NTH Order Distributed Activation Energy Model for Isothermal Pyrolysis of Forest Waste Using Gaussian Distribution


Cite

BROWN, M. E. 1988. Introduction to Thermal Analysis Techniques and Applications. Chapman and Hall, New York.Search in Google Scholar

BURNHAM, A. K. - SCHMIDT, B. J. - BRAUN, R. L. 1995. A test of parallel reaction model using kinetic measurements on hydrous pyrolysis residues. In Organic Geochemistry, vol. 23, 1995, pp. 931-939.Search in Google Scholar

BURNHAM, A. K. - BRAUN, R. L.1999. Global kinetic analysis of complex materials. In Energy Fuels, vol.13, 1999, pp. 1-22.Search in Google Scholar

CAPART, R. - KHEZAMI, L. - BURNHAM, A. K. 2004. Assessment of various kinetic models for the pyrolysis of microgranular cellulose. In Thermochimica Acta, vol. 417, 2004, no. 1, pp. 79-89.Search in Google Scholar

CONESA, J. A. - CABALLERO, J. A. - MARCILLA, A. - FONT, R.1995. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. In Thermochimica Acta, vol. 254, 1995, pp. 175-192.Search in Google Scholar

CONESA, J. A. - MARCILLA, A. - CABALLERO, J. A. - FONT, R. 2001. Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. In Journal of Analytical and Applied Pyrolysis, vol. 617, 2001, pp. 58-59.Search in Google Scholar

DHAUNDIYAL, A. - TEWARI, P. C. 2015. Comparative analysis of pine needles and coal for electricity generation using carbon taxation and emission reductions. In Acta Technologica Agriculturae, vol. 18, 2015, no. 2, pp. 29-35.Search in Google Scholar

DHAUNDIYAL, A. - TEWARI, P. C. 2016. Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. In Acta Technologica Agriculturae, vol. 19, no. 1, pp. 10-18.Search in Google Scholar

DHAUNDIYAL, A. - SINGH, S. B. 2016. Distributed activation energy modelling for pyrolysis of forest waste using Gaussian distribution. Proceedings of the Latvian Academy of Sciences. Section B. In Natural, Exact, and Applied Sciences, vol. 70, 2016, pp. 64-70.Search in Google Scholar

FERDOUS, D. - DALAI, A. K. - BEJ, S. K. - THRING, R. W. 2002. Pyrolysis of lignins: experimental and kinetics studies. In Energy Fuels, vol. 16, 2002, pp.1405-1412.Search in Google Scholar

GALGANO, A. - BLASI, C. D. 2003. Modeling wood degradation by the unreacted-coreshrinking approximation. In Industrial and Engineering Chemistry Research, vol. 42, 2003, pp. 2101-2111.Search in Google Scholar

HOWARD, J. B. 1981. Fundamentals of coal pyrolysis and hydropyrolysis. Chapter 12. In Chemistry of Coal Utilization. Elliott, M. A. (Ed.), New York : John Wiley & Sons, 1981. pp. 665-784.Search in Google Scholar

LAKSHMANAN, C. C., WHITE, N. 1994. A new distributed activation energy model using Weibull distribution for the representation of complex kinetics. In Energy Fuels, vol. 8, 1994, pp. 1158-1167.Search in Google Scholar

MYSYK, R. D. - WHYMAN, G. E. - SAVOSKIN, M. V. - YAROSHENKO, A. P. 2005. Theoretical model and experimental study of pore growth during thermal expansion of graphite intercalation compounds. In Journal of Thermal Analysis and Calorimetry, vol. 79, 2005, no. 3, pp. 515-519.Search in Google Scholar

NIKSA, S. - LAU, C. W. 1993. Global rates of devolatilization of various coal types. In Combustion Flame, vol. 94, 1993, no. 3, pp. 293-307.Search in Google Scholar

OTERO, M. - CALVO, L. F. - GIL, M. V. - GARCIA, A. I. - MORAN, A. 2008. Cocombustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. In Bioresource Technology, vol. 99, 2008, pp. 6311-6319.Search in Google Scholar

PITT, G. J. 1962. The kinetics of the evolution of volatile products from coal. In Fuel, vol. 1, 1962, pp. 267-274.Search in Google Scholar

PYSIAK, J. J. - BADWI, Y. A. Al. 2004. Kinetic equations for thermal dissociation processes. In Journal of Thermal Analysis and Calorimetry, vol. 76, 2004, pp. 521-528.Search in Google Scholar

SUUBERG, E. M. 1983. Approximate solution technique for non-isothermal, Gaussian distributed activation energy models. In Combustion Flame, vol. 50, 1983, pp. 243-245.Search in Google Scholar

TENG, H. - HSIEH, C. T. 1999. Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal. In Industrial and Engineering Chemistry Research, vol. 37, pp. 3618-3624.Search in Google Scholar

TEWARI, L. M. - JALAL, J. S. - KUMAR, S. - PANGTEY, Y. P. S. - KUMAR R. 2010. Wild and Exotic Gymnosperms of Uttarakhand, Central Himalaya, India. In eJournal of Biological Sciences, vol. 4, 2010, no. 1, pp. 32-36.Search in Google Scholar

VAND V. 1943. A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. London. A55:222.10.1088/0959-5309/55/3/308Search in Google Scholar

ZHU, H. M. - YAN, J. H. - JIANG, X. G. - LAI, Y. E. - CEN, K. F. 2009. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. In Journal of Hazardous Materials, vol. 162, 2009, no. 2, pp. 646-651.Search in Google Scholar

eISSN:
1338-5267
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other