Open Access

Exopolysaccharides from lactic acid bacteria as corrosion inhibitors


Cite

[1]. Arrage AA, N Vasishtha, D Sundberg, G Bausch, HL Vincent and DC White. On-line monitoring of antifouling and fouling-release surfaces using bioluminescence and fluorescence measurements during laminar-flow. J Ind Microbiol, 1995, 277-282.10.1007/BF01569980Search in Google Scholar

[2]. Breur, H. J. A. “Fouling and Bioprotection of Metals: Monitoring and Control of Deposition Processes in Aqueous Environments.” Ph.D. thesis, Technische Universiteit Delft, 2001.Search in Google Scholar

[3]. Cerning, J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev., 1990, 87, 113-130.10.1111/j.1574-6968.1990.tb04883.xSearch in Google Scholar

[4]. Cerning, J. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait, 1995, 75,463-472.10.1051/lait:19954-536Search in Google Scholar

[5]. Christensen B.E. and W.G. Characklis. Physical and chemical properties of biofilms. In: Biofilms (Characklis WG and KC Marshall, eds), John Wiley & Sons, New York., 1990, 93-130.Search in Google Scholar

[6]. Costerton W.J , K.J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta and T.J. Marrie. Bacterial biofilms in nature and disease. Anal Rev Microbiol, 1987, 41, 435-464.10.1146/annurev.mi.41.100187.002251Search in Google Scholar

[7]. Daeschel, M.A. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technol., 1989, 1, 164-167.Search in Google Scholar

[8]. De Vuyst L, F.De Vin , F. Vaningelgem, B.Degeest. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J, 2001, 11, 687-707.10.1016/S0958-6946(01)00114-5Search in Google Scholar

[9]. Garai-Ibabe G., M. T. Duenas, A. Irastorza, E. Sierra-Filardi, M. L. Werning, P. Lopez, A. L. Corbi andP. Fernandez de Palencia, Bioresour. Technol., 2010, 101,9254-9263.10.1016/j.biortech.2010.07.050Search in Google Scholar

[10]. van Geel-Schutten G.H., Flesch, F., ten Brink, B., Smith, M.R., and Dijkhuizen, L. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl. Microbiol. Biotechnol., 1998, 50, 697-703.10.1007/s002530051353Search in Google Scholar

[11]. Geel-Schutten, G. H. van. “Exopolysaccharide synthesis by Lactobacillus reuteri.” Ph.D. thesis, University of Groningen, 2000.Search in Google Scholar

[12]. Gruter, M., B. R. Leeflang, J. Kuiper, J. P. Kamerling, and J. F. Vliegenthart. Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydr. Res., 1992, 231, 273-291.10.1016/0008-6215(92)84025-NSearch in Google Scholar

[13]. Gruter, M., Leeflang, B.R., Kuiper, J., Kamerling, J.P., and Vliegenthart, J.F.G. 1993. Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrueckii ssp bulgaricus rr grown in skimmed milk. Carbohydr. Res.,1993, 239, 209-226.Search in Google Scholar

[14]. Dueñas-Chasco, M.T., Rodríguez-Carvajal, M.A., Tejero-Mateo, P., Franco-Rodríguez, G., Espartero, J.L., Irastorza-Iribas, A., and Gil-Serrano, A.M. Structural analysis of the exopolysaccharide produced by Pediococcus damnosus 2.6. Carbohydr. Res., 1997, 303, 453-458.10.1016/S0008-6215(97)00192-4Search in Google Scholar

[15]. Dueñas-Chasco, M.T., Rodríguez-Carvajal, M.A., Tejero-Mateo, P., Espartero, J.L., Irastorza- Iribas, A., and Gil-Serrano, A.M. Structural analysis of the exopolysaccharides produced by Lactobacillus spp. G-77. Carbohydr. Res., 1998, 307, 125-133.10.1016/S0008-6215(98)00034-2Search in Google Scholar

[16]. Franz, G. Polysaccharides in pharmacy. Adv. Polym. Sci., 1986, 76, 1-30.10.1007/3-540-15830-8_1Search in Google Scholar

[17]. Jayaraman, A.,·Earthman, J. C., and Wood, T. K. “Corrosion Inhibition by Aerobic Biofilms on SAE 1018 Steel.” Appl. Microbiol. Biotechnol, 1997, 47: 62-68.10.1007/s002530050889Search in Google Scholar

[18]. Jolly L, F. Stingele. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int. Dairy J., 2001,11, 733- 745.10.1016/S0958-6946(01)00117-0Search in Google Scholar

[19]. Hamada, S. and H. D. Slade. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev., 1980, 44,331-384.10.1128/mr.44.2.331-384.1980Search in Google Scholar

[20]. Ignatova-Ivanova Ts., Ivanov, R., Iliev, I., and Ivanova, I. “Study Anticorrosion Effect of EPS from Now Strains Lactobacillus Delbruecii.” Biotechnol & Biotechnol EQ, 2009, Special edition/on line 705-708.10.1080/13102818.2009.10818522Search in Google Scholar

[21]. Ignatova-Ivanova, Ts., Ivanov, R., Iliev, I., and Ivanova, I. “Study of Anticorrosion Effect of Exopolysaccharides Produced Lactobacillus Delbrueckii b5 Cultivated on Different Carbohydrates.” Biotechnol & Biotechnol EQ, 2011, Special edition/on line 224-227.Search in Google Scholar

[22]. Ignatova-Ivanova Ts. and R. Ivanov. EXOPOLYSACCHARIDES FROM LACTIC ACID BACTERIA AS CORROSION INHIBITORS. Journal of Life Sciences, doi:10.17265/1934-7391/2014.12.001, 2014, 8, 940-945.Search in Google Scholar

[23]. Ignatova-Ivanova Ts. and R. Ivanov. Study of Biofilm formed by lactic acid bacteria on the surface of mild steel. Journal of Life Sciences,2014, 8, 799-804.Search in Google Scholar

[24]. Ignatova-Ivanova Ts. and R. Ivanov. ANTICORROSION EFFECT OF BIOFILM FORMING BY LACTOBACILLUS STRAINS ON METAL SURFACES. Bulgarian Journal of Agricultural Science, 2013,19, (2), 83-85.Search in Google Scholar

[25]. Ignatova-Ivanova Ts., S. Ibrjam and R. Ivanov. STUDY OF THE EFFECT OF LACTIC ACID FERMENTATION END PRODUCTS ON THE SPEED OF THE CORROSION PROCESS. International Journal of Current Microbiology and Applied Sciences,2015, 4 (4), 397-401.Search in Google Scholar

[26]. Kleerebezem M., R. van Kranenburg, R. Tuinier, I. C. Boels, P. Zoon, E. Looijesteijn, J. Hugenholtz and W. M. de Vos. Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties?Antonie van Leeuwenhoek, 1999, 76, 357-365.10.1007/978-94-017-2027-4_21Search in Google Scholar

[27]. Kralj S, GH van Geel-Schutten, MJEC van der Maarel, L.Dijkhuizen. Efficient screening methods for glucosyltransferase genes in Lactobacillus strains. Biocatal. Biotransformation, 2003, 21, 181-187.10.1080/10242420310001618519Search in Google Scholar

[28]. Llauberes, R. M., B. Richard, A. Lonvaud, D. Dubourdieu, and B. Fournet. Structure of an exocellular beta-D-glucan from Pediococcus sp., a wine lactic bacteria. Carbohydr. Res., 1990, 203, 103-107.10.1016/0008-6215(90)80049-9Search in Google Scholar

[29]. Maeda H., X. Zhu, S. Suzuki, K. Suzuki and S. Kitamura, J. Agric. Food Chem., 2004, 52, 5533-5538.10.1021/jf049617g15315396Search in Google Scholar

[30] Marshall, K. C. “Biofilms: an Overview of Bacterial Adhesion, Activity, and Control at Surfaces.” ASM News, 1992, 58: 202-207.Search in Google Scholar

[31]. McIntosh M., B. A. Stone and V. A. Stanisich, Appl. Microbiol. Biotechnol., 2005, 68, 163-173.10.1007/s00253-005-1959-515818477Search in Google Scholar

[32]. Monsan P., S. Bozonnet, C. Albenne, G. Joucla,R.-M. Willemot and M. Remaud-Siméon, Int. Dairy J.,2001, 11, 675-685.10.1016/S0958-6946(01)00113-3Search in Google Scholar

[33]. Montville, T.H., Cooney, C.L., and Sinskey, A.J. Streptococcus mutans dextransucrase: a review. Adv. Appl. Microbiol, 1978, 24, 55-84.10.1016/S0065-2164(08)70636-1Search in Google Scholar

[34]. Mozzi F, et al. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 2006, 72, 4431-4435.Search in Google Scholar

[35]. Nakajima, H., Hirota, T., Toba, T., Itoh, T., and Adachi, S. Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr. Res., 1992, 224, 245-253.10.1016/0008-6215(92)84110-ESearch in Google Scholar

[36]. Nakata M., T. Kawaguchi, Y. Kodama and A. Konno, Polymer, 1998, 39, 1475-1481.10.1016/S0032-3861(97)00417-5Search in Google Scholar

[37]. Nicolaus B., M. Kambourova, and E. T. Oner, “Exopolysaccharides from extremophiles: from fundamentals to biotechnology,” Environmental Technology, 2010, 31(10), 1145-1158.10.1080/09593330903552094Search in Google Scholar

[38]. Pilling J. and C. Frohberg, Germany Pat, US20110189346 A1, 2011.Search in Google Scholar

[39]. Polak-Bereckaa M., A. Choma, A. W. Górska, A. Gamiand, J. Cybulska. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources.Carbohydrate Polymers, 2015, 117, 501-509.10.1016/j.carbpol.2014.10.006Search in Google Scholar

[40]. Roberts, I.S. Bacterial polysaccharides in sickness and in health. Microbiology, 1995, 141, 2023-2031. 10.1099/13500872-141-9-2023Search in Google Scholar

[41]. Shin Y.C., Y. H. Kim, H. S. Lee, S. J. Cho and S. M. Byun, Biotechnol. Bioeng., 1984, 33, 129-133.10.1002/bit.260330117Search in Google Scholar

[42]. Shukla R. and A. Goyal, Int. J. Biol. Macromol., 2013, 62,352-357.10.1016/j.ijbiomac.2013.09.043Search in Google Scholar

[43]. Stingele, F., Neeser, J.-R., and Mollet, B. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol.,1996, 178, 1680-1690.Search in Google Scholar

[44]. Sutherland W., “Bacterial exopolysaccharides,” Advances in Microbial Physiology, 1972, 8, 143-213.10.1016/S0065-2911(08)60190-3Search in Google Scholar

[45]. Tieking M, M.Korakli, M.A.Ehrmann, M.G.Gänzle, R.F.Vogel. In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl. Environ. Microbiol, 2003, 69, 945-952.10.1128/AEM.69.2.945-952.200314358912571016Search in Google Scholar

[46]. Tieking M., M.G. Gänzle, Trends Food Sci. Technol, 2005, 16, 79-84.10.1016/j.tifs.2004.02.015Search in Google Scholar

[47]. Velasco S., E. Årsköld, M. Paese, H. Grage, A. Irastorza,P. Rådström and E. W. J. van Niel, Int. J. Food Microbiol.,2006, 111, 252-258.10.1016/j.ijfoodmicro.2006.06.00816854485Search in Google Scholar

[48]. Weiner, R., Langille, S., and Quintero, E. Structure, function and immunochemistry of bacterial exopolysaccharides. J. Ind. Microbiol., 1995, 15, 339-346.10.1007/BF015699898605071Search in Google Scholar

[49]. Whitfield, C. Bacterial extracellular polysaccharides. Can. J. Microbiol.,1988, 34, 415-420. 10.1139/m88-0733052752Search in Google Scholar

eISSN:
2367-5144
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, other, Geosciences, Geography, Life Sciences, Physics