Open Access

The Effect of a Probiotic Containing Enterococcus faecium DSM 7134 on Redox and Biochemical Parameters in Chicken Blood


Cite

Aebi H. (1984). Catalase in vitro. Meth. Enzymol., 105: 121–126.Search in Google Scholar

Akerboom T.P., Sies H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth. Enzymol., 77: 373–382.Search in Google Scholar

Alonso-Alvarez C., Perez C., Velando A. (2007). Effects of acute exposure to heavy fuel oil from the prestige spill on a seabird. Aquat. Toxicol., 84: 103–110.Search in Google Scholar

Aluwong T., Kawu M., Raji M., Dzenda T., Govwang F., Sinkalu V., Ayo J. (2013). Effect of yeast probiotic on growth, antioxidant enzyme activities and malondialdehyde concentration of broiler chickens. Antioxidants, 2: 326–339.Search in Google Scholar

Arslan C. (2006). L-carnitine and its use as a feed additive in poultry feeding a review. Rev. Med. Vet., 157: 134–142.Search in Google Scholar

Audisio M.C., Oliver G., Apella M.C. (2000). Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J. Food Protect., 63: 1333–1337.10.4315/0362-028X-63.10.1333Open DOISearch in Google Scholar

Aw T.Y., Wiliams M.W., Gray L. (1992). Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am. J. Physiol., 262: 99–106.Search in Google Scholar

Babazadeh D., Vahdatpour T., Nikpiran H., Jafargholipour M., Vahdatpour S. (2011). Effects of probiotic, prebiotic and synbiotic intake on blood enzymes and performance of Japanese quails (Coturnix japonica). Indian J. Anim. Res., 81: 870–874.Search in Google Scholar

Benzie I.F.F., Strain J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239: 70–76.Search in Google Scholar

Bessman S.P., Geiger P.J. (1981). Transport of energy in muscle: the phosphocreatine shuttle. Science, 211: 448–452.Search in Google Scholar

Capcarova M., Weiss J., Hrncar C., Kolesarova A., Pal G. (2010). Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. J. Anim. Physiol. Anim. Nutr., 94: 215–224.Search in Google Scholar

Douglas D.N., Pu C., Lewis J., Bhat R., Anwar-Mohamed A., Logan M., Lund G., Addison W.R., Lehner R., Kneteman N.M. (2016). Oxidative stress attenuates lipid synthesis and increases mitochondrial fatty acid oxidation in hepatoma cells infected with hepatitis C virus. J. Biol. Chem, 22: 1974–1990.10.1074/jbc.M115.674861Open DOISearch in Google Scholar

El-Sissi A., Mohamed S. (2011). Impact of symbiotic on the immune response of broiler chickens against NDV and IBV vaccines. GJBBR, 6: 186–191.Search in Google Scholar

Fki I., Sahnoun Z., Sayadi S. (2007). Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in rats fed a cholesterol-rich diet. J. Agric. Food Chem., 7: 624–631.Search in Google Scholar

Gay C., Gębicki J.M. (2002). Perchloric acid enhances sensitivity and reproducibility of the ferricxylenol orange peroxide assay. Anal. Biochem., 304: 42–46.Search in Google Scholar

Harr K.E. (2002). Clinical chemistry of companion avian species: A review. Vet. Clin. Pathol., 31: 140–151.10.1111/j.1939-165X.2002.tb00295.xOpen DOISearch in Google Scholar

Juśkiewicz J., Semaskaite A., Zduńczyk Z., Wróblewska M., Gružauskas R., Juśkiewicz M. (2007). Minor effect of the dietary combination of probiotic Pediococcus acidilactici with fructooligosaccharides or polysaccharidases on beneficial changes in the cecum of rats. Nutr. Res., 27: 133–139.10.1016/j.nutres.2007.01.005Open DOISearch in Google Scholar

Kogan G., Pajtinka M., Babincova M., Miadokova E., Rauko P., Slamenova D. (2008). Yeast cell wall polysaccharides as antioxidants and antimutagens: can they fight cancer? Neoplasma, 55: 387–393.Search in Google Scholar

Kullisaar T., Zilmer M., Mikelsaar M. (2002). Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol., 72: 215–224.10.1016/S0168-1605(01)00674-2Open DOISearch in Google Scholar

Kumar M., Kumar A., Nagpal R., Mohania D., Behare P., Verma V., Kumar P., Poddar D., Aggarwal P.K., Henry C.J., Jain S., Yadav H. (2010). Cancer-preventing attributes of probiotics: An update. Int. J. Food Sci. Nutr., 61: 473−496.10.3109/0963748090345597120187714Open DOISearch in Google Scholar

Levkut M., Revajová V., Lauková A., Ševcíková Z., Spišáková V., Faixová Z., Levkutová M., Strompfová V., Pistl J., Levkut M. (2012). Leukocytic responses and intestinal mucin dynamics of broilers protected with Enterococcus faecium EF 55 and challenged with Salmonella enteritidis. Res. Vet. Sci., 93: 195–201.10.1016/j.rvsc.2011.06.02121767856Open DOISearch in Google Scholar

Li W.F., Huang Q., Li Y.L., Rajput I.R., Huang Y., Hu C.H. (2012). Induction of probiotic strain Enterococcus faecium EF1 on the production of cytokines, superoxide anion and prostaglandin E2 in a macrophage cell line. Pak. Vet. J., 32: 530–534.Search in Google Scholar

Liu X., Zhang S., Shan X., Christie P. (2007). Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate cocontamination. Ecotox. Environ. Safe., 68: 305–313.10.1016/j.ecoenv.2006.11.00117239437Open DOISearch in Google Scholar

Luo J., Zheng A., Meng K., Chang W., Bai Y., Li K. (2013). Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium. J. Proteomics, 91: 226–241.10.1016/j.jprot.2013.07.01723899589Open DOISearch in Google Scholar

Łukaszewicz-Hussain A., Moniuszko-Jakoniuk J. (2004). Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Pol. J. Environ. Stud., 13: 303–309.Search in Google Scholar

Mikulski D., Jankowski J., Naczmanski J., Mikulska M., Demey V. (2012). Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poultry Sci., 91: 2691–2700.10.3382/ps.2012-0237022991559Open DOISearch in Google Scholar

Milinkovic-Tur S., Stojevic Z., Pirsljin J., Zdelar-Tuk M., Poljicak-Milas N., Beer Ljubic B., Gradinski-Vrbanac B. (2007). Effect of fasting and refeeding on the antioxidant system in cockerels and pullets. Acta Vet. Hung., 55: 181–189.10.1556/AVet.55.2007.2.317555282Open DOISearch in Google Scholar

Misra H.P., Fridovich I. (1972). The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 247: 3170–3175.Search in Google Scholar

Nutrient Requirements for Poultry (2005). Fourth edition revised and enlarged. Collective work (A. Rutkowski – co-editor), PAN IFiZZ, Jabłonna, Poland.Search in Google Scholar

Ognik K., Krauze M. (2012). Dietary supplementation of mannanoligosaccharides to turkey hens on their growth performance and antioxidant status in the blood. S. Afr. J. Anim. Sci., 42: 379–388.Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. Poultry Sci., 21: 259–271.Search in Google Scholar

Ognik K., Krauze M. (2016). The potential for using enzymatic assays to assess the health of turkeys. Worlds Poultry Sci. J., 72: 535–550.Search in Google Scholar

Ognik K., Czech A., Stachyra K. (2013). Effect of a natural versus a synthetic antioxidant, and sex and age on the redox profile in the blood of growing turkeys. S. Afr. J. Anim. Sci., 43: 473–481.Search in Google Scholar

Ognik K., Cholewińska E., Sembratowicz I., Grela E., Czech A. (2016). The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. Worlds Poultry Sci. J., 72: 291–298.Search in Google Scholar

Omaye S.T., Tumbull J.D.H., Sauberlich E. (1979). Selected methods for determination of ascorbic acid in animal cells, tissues and fluids. Meth. Enzymol., 62: 3–11.Search in Google Scholar

Rajput I.R., Li W.F. (2012). Potential role of probiotics in mechanism of intestinal immunity. Pak. Vet. J., 32: 303–308.Search in Google Scholar

Rajput I.R., Li Y.L., Xu X., Huang Y., Zhi W.C., Yu D.Y., Li W. (2013). Supplementary effects of Saccharomyces boulardii and Bacillus subtilis B10 on digestive enzyme activities, antioxidation capacity and blood homeostasis in broiler. IJABE, 15: 231–237.Search in Google Scholar

Russel J.R., Dun-Xian T., Carmen N., Gitto O.E. (2000). Actions of melatonin in the reduction of oxidative stress. J. Biomed. Sci., 7: 444–458.Search in Google Scholar

Salih M., Smith D.M., Price J.F., Dawson L.E. (1987). Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poultry Sci., 66: 1483–1488.10.3382/ps.06614833684874Open DOISearch in Google Scholar

Samli H.E., Senkoylu N., Koc F., Kanter M., Agma A. (2007). Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Arch. Anim. Nutr., 61: 42–49.10.1080/1745039060110665517361947Open DOISearch in Google Scholar

Samli H.E., Dezcan S., Koc F., Ozduven M.L., Okur A.A., Senkoylu N. (2010). Effects of Enterococcus faecium supplementation and floor type on performance, morphology of erythrocytes and intestinal microbiota in broiler chickens. Brit. Poultry Sci., 51: 564–568.10.1080/00071668.2010.50724120924852Open DOISearch in Google Scholar

Sobczak A., Kozłowski K. (2015). The effect of a probiotic preparation containing Bacillus subtilis ATCC PTA-6737 on egg production and physiological parameters of laying hens. Ann. Anim. Sci., 15: 711–723.Search in Google Scholar

Stancu C.S., Toma L., Sima A.V. (2012). Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue. Res., 349: 433–446.Search in Google Scholar

Tsimikas S., Miller Y.I. (2011). Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in cardiovascular disease. Curr. Pharm. Des., 17: 27–37.Search in Google Scholar

Verago J.L., Grassi-Kassisse D.M., Spadari-Bratfisch R.C. (2001). Metabolic markers following beta-adrenoceptor agonist infusion in footshock-stressed rats. Braz. J. Med. Biol. Res., 34: 1197–1207.10.1590/S0100-879X2001000900014Open DOISearch in Google Scholar

Zhao X., Guo Y., Guo S., Tan J. (2013). Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl. Microbiol. Biotechnol., 97: 6477–6488.10.1007/s00253-013-4970-223666481Open DOISearch in Google Scholar

Zheng A., Luo J., Meng K., Li J., Zhang S., Li K. (2014). Proteome changes underpin improved meat quality and yield of chickens (Gallus gallus) fed the probiotic Enterococcus faecium. BMC Genomics, 15: 1167–1181.10.1186/1471-2164-15-1167432594825532559Open DOISearch in Google Scholar

Zheng A., Luo J., Meng K., Li J., Bryden W., Chang W., Zhang S., Wang L., Liu G., Yao B. (2016). Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics, DOI: 10.1186/S12864-016-2371-5.10.1186/S12864-016-2371-5Open DOISearch in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine