Open Access

Genomic prediction by considering genotype × environment interaction using different genomic architectures


Cite

Aguilar I., Misztal I., Johnson D.L., Legarra A., Tsuruta S., Lawlor T.J. (2010). Hot topic: Aunified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci., 93: 743-752.Search in Google Scholar

Aguilar I., Misztal I., Legarra A., Tsuruta S. (2011). Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J. Anim. Breed. Genet., 128: 422-428.Search in Google Scholar

Bastiaansen J.W.M., Bovenhuis H., Lopes M.S., Silva F.F., Megens H.J., Calus M.P.L. (2014). SNPeffects depend on genetic and environmental context. Proc. 10th World Congress on Genetics Applied to Livestock Production, 17-22.08.2014, Vancouver, Canada.Search in Google Scholar

Bohlouli M., Shodja J., Alijani S., Eghbal A. (2013). The relationship between temperature- humidity index and test-day milk yield of Iranian Holstein dairy cattle using random regression model. Livest. Sci., 157: 414-420.Search in Google Scholar

Bohlouli M., Shodja J., Alijani S., Pirany N. (2014). Interaction between genotype and geographical region for milk production traits of Iranian Holstein dairy cattle. Livest. Sci., 169: 1-9.Search in Google Scholar

Brito F.V., Neto J.B., Sargolzaei M., Cobuci J.A., Schenkel F.S. (2011). Accuracy of genomic selection in simulated populations mimicking the extent of linkage disequilibrium in beef cattle. BMC Genetics, 12: 80.Search in Google Scholar

Brügemann K., Gernand E., von Borstel U.U., König S. (2011). Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature × humidity-dependent covariates. J. Dairy Sci., 94: 4129-4139.Search in Google Scholar

Calus M.P.L., Veerkamp R.F. (2011). Accuracy of multi-trait genomic selection using different methods. Genet. Sel. Evol., 43: 1-14.Search in Google Scholar

Calus M.P.L., Groen A.F., De Jong G. (2002). Genotype by environment interaction for protein yield in Dutch dairy cattle as quantified by different models. J. Dairy Sci., 85: 3115-3123.Search in Google Scholar

Calus M.P.L.,de Haas Y., Pszczola M., Veerkamp R.F. (2013). Predicted accuracy of and response to genomic selection for new traits in dairy cattle. Animal, 7: 183-191.Search in Google Scholar

Ceron-unoz M., Tonhati F.H., Costa C.N., Rojas- Sarmiento D., Echeverri D.M. (2004). Factors that cause genotype by environment interaction and use ofamultiple-trait herd-cluster model for milk yield of Holstein cattle from Brazil and Colombia. J. Dairy Sci., 87: 2687-2692.Search in Google Scholar

Clark S.A., Hickey J.M., van der Werf J.H.J. (2011). Different models of genetic variation and their effect on genomic evaluation. Genet. Sel. Evol., 43: 18.Search in Google Scholar

Daetwyler H.D., Villanueva B., Woolliams J.A. (2008). Accuracy of predicting the genetic risk of disease usingagenome-wide approach. PLo S ONE, 3: e3395.Search in Google Scholar

Daetwyler H.D., Pong - Wong R., Villanueva B., Woolliams J.A. (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics, 185: 1021-1031.Search in Google Scholar

De Roos A.P.W., Hayes B.J., Goddard M.E. (2009). Reliability of genomic predictions across multiple populations. Genetics, 183: 1545-1553.Search in Google Scholar

Dekkers J.C.M. (2007). Prediction of response to marker-assisted and genomic selection using selection index theory. J. Anim. Breed. Genet., 124: 331-341.Search in Google Scholar

Falconer D.S., Mac Kay T.F.C. (1996). Introduction to Quantitative Genetics, 4th ed., Longman Group, Essex, UK.Search in Google Scholar

Goddard M. (2009). Genomic selection: Prediction of accuracy and maximisation of long term response. Genetica, 136: 245-257.Search in Google Scholar

Guo G., Zhao F., Wang Y., Zhang Y., Du L., Su G. (2014). Comparison of single-trait and multiple-trait genomic prediction models. Genetics, 15: 30.Search in Google Scholar

Habier D., Fernando R.L., Dekkers J.C.M. (2009). Genomic selection using low-density marker panels. Genetics, 182: 343-353.Search in Google Scholar

Haile-Mariam M., Pryce J.E., Schrooten C., Hayes B.J. (2015). Including overseas performance information in genomic evaluations of Australian dairy cattle. J. Dairy Sci., 98: 1-17.Search in Google Scholar

Hammami H., Rekik B., Bastin C., Soyeurt H., Bormann J., Stoll J., Gengler N. (2009). Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. J. Dairy Sci., 92: 4604-4612.Search in Google Scholar

Hayashi T., Iwata H. (2013). A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC Bioinformatics, 14: 1-14.Search in Google Scholar

Hayes B.J., Bowman P.J., Chamberlain A.J., Goddard M.E. (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci., 92: 433-443.Search in Google Scholar

Hayes B.J., Daetwyler H.D., Goddard M.E. (2016). Models for genome × environment interaction: examples in livestock. Crop Sci., 56: 2251-2259.Search in Google Scholar

Hickey J.M., Gorjanc G. (2012). Simulated data for genomic selection and genome-wide association studies usingacombination of coalescent and gene drop methods. G3, 2: 425-427.Search in Google Scholar

Hill W.G., Robertson A. (1968). Linkage disequilibrium in finite populations. Theor. Appl. Genet., 6: 226-231.Search in Google Scholar

Hozé C., Fritz S., Phocas F., Boichard D., Ducrocq V., Croiseau P. (2014). Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. J. Dairy Sci., 97: 3918-3929.Search in Google Scholar

Jia Y., Jannink J.L. (2012). Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics, 192: 1513-1522.Search in Google Scholar

Jiang J., Zhang Q., Ma L., Li J., Wang Z., Liu J.F. (2015). Joint prediction of multiple quantitative traits usinga Bayesian multivariate antedependence model. Heredity, 115: 29-36.Search in Google Scholar

Jiménez-Montero J.A., González- Recio O., Alenda R. (2013). Comparison of methods for the implementation of genome-assisted evaluation of Spanish dairy cattle. J. Dairy Sci., 96: 625-634.Search in Google Scholar

Karoui S., Carabaño M.J., Díaz C., Legarra A. (2012). Joint genomic evaluation of French dairy cattle breeds using multiple-trait models. Genet. Sel. Evol., 44: 39.Search in Google Scholar

Kolmodin R., Strandberg E., Madsen P., Jensen J., Jorjani H. (2002). Genotype by environment interaction in Nordic dairy cattle studied by use of reaction norms. Acta Agric. Scand. A Anim. Sci., 52: 11-24.Search in Google Scholar

König S., Simianer H., Willam A. (2009). Economic evaluation of genomic breeding programs. J. Dairy Sci., 92: 382-391.Search in Google Scholar

Lillehammer M., Ødegard J., Meuwissen T.H.E. (2007). Random regression models for detection of gene by environment interaction. Genet. Sel. Evol., 39: 105-121.Search in Google Scholar

Lillehammer M., Goddard M.E., Nilsen H., Sehested E., Olsen H.G., Lien S., Meuwissen T.H.E. (2008). Quantitative trait locus-by-environment interaction for milk yield traits on Bos taurus autosome 6. Genetics, 179: 1539-1546.Search in Google Scholar

Lillehammer M., Hayes B.J., Meuwissen T.H.E., Goddard M.E. (2009). Gene by environment interactions for production traits in Australian dairy cattle. J. Dairy Sci., 92: 4008-4017.Search in Google Scholar

Lund M.S., Su G., Janss L., Guldbrandtsen B., Brøndum R.F. (2014). Genomic evaluation of cattle inamulti-breed context. Livest. Sci., 166: 101-110.Search in Google Scholar

Meuwissen T.H.E., Hayes B., Goddard M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819-1829.Search in Google Scholar

Misztal I., Tsuruta S., Strabel T., Auvray B., Druet T., Lee D.H. (2002). BLUPF90 and related programs. Communication no. 28-07. Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France.Search in Google Scholar

Moser G., Khatkar M.S., Hayes B.J., Raadsma H.W. (2012). Accuracy of direct genomic values in Holstein bulls and cows using subsets of SNPmarkers. Genet. Sel. Evol., 42: 37.Search in Google Scholar

Muir W.M. (2007). Comparison of genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. J. Anim. Breed. Genet., 124: 342-355.Search in Google Scholar

Nejati - Javaremi A., Smith C., Gibson J. (1997). Effect of total allelic relationship on accuracy of evaluation and response to selection. J. Anim. Sci., 75: 1738-1745.Search in Google Scholar

Olson K.M., Van Raden P.M., Tooker M.E. (2012). Multibreed genomic evaluations using purebred Holsteins, Jerseys, and Brown Swiss. J. Dairy Sci., 95: 5378-5383.Search in Google Scholar

Pimentel E.C.G., Wensch - Dorendorf M., König S., Swalve H.H. (2013). Enlarging a training set for genomic selection by imputation of un-genotyped animals in populations of varying genetic architecture. Genet. Sel. Evol., 45: 12.Search in Google Scholar

Purcell S., Neale B., Todd - Brown K., Thomas L., Ferreira M.A.R., Bender D., Maller J., Sklar P.,de Bakker P.I.W., Daly M.J., Sham P.C. (2007). PLINK: Atool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81: 559-575.Search in Google Scholar

Robertson A. (1959). The sampling variance of the genetic correlation coefficient. Biometrics, 15: 469-485.Search in Google Scholar

Sargolzaei M., Schenkel F.S. (2009). QMSim:alarge-scale genome simulator for livestock. Bioinformatics, 25: 680-681.Search in Google Scholar

Solberg T.R., Sonesson A.K., Woolliams J.A., Meuwissen T.H.E. (2008). Genomic selection using different marker types and densities. J. Anim. Sci., 86: 2447-2454.Search in Google Scholar

Van Raden P.M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci., 91: 4414-4423.Search in Google Scholar

Wientjes Y.C.J., Calus M.P.L., Goddard M.E., Hayes B.J. (2015). Impact of QTLproperties on the accuracy of multi-breed genomic prediction. Genet. Sel. Evol., 47: 42.Search in Google Scholar

Yin T., Pimentel E.C.G., König U., Borstel V., König S. (2014). Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context ofatemperature × humidity-dependent covariate. J. Dairy Sci., 97: 2444-2454.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine