Open Access

Fiber substrates in the nutrition of weaned piglets – a review


Cite

Abad R., Ibáñez M.A., Carabaño R., García J. (2013). Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determination of soluble fibre and intestinal mucin. Anim. Feed Sci. Technol., 182: 61-70.Search in Google Scholar

Awati A., Williams B.A., Bosch M.W., Gerrits W.J.J., Verstegen M.W.A. (2006). Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets. J. Anim. Sci., 84: 2133-2140.Search in Google Scholar

Bach Knudsen K.E. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319-338.Search in Google Scholar

Bach Knudsen K.E. (2001). The nutritional significance of “dietary fibre“ analysis. Anim. Feed Sci. Technol., 90: 3-20.Search in Google Scholar

Bach Knudsen K.E., Hedemann M.S., Lærke H. N. (2012). The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol., 173: 41-53.Search in Google Scholar

Barszcz M., Skomiał J. (2011). The development of the small intestine of piglets - chosen aspects. J. Anim.Feed Sci., 20: 3-15.Search in Google Scholar

Bikker P., Dirkzwager A., Fledderus J., Trevisi P.,le Huërou- Luron I., Lallès J.P., Awati A. (2006). The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci., 84: 3337-3345.Search in Google Scholar

Boudry G., Péron V., Le Huërou- Luron I., Lallès J.P. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr., 134: 2256-2262.Search in Google Scholar

Brownlee I.A. (2011). The physiological roles of dietary fibre. Food Hydrocolloid, 25: 238-250.Search in Google Scholar

Bruininx E.M.A.M., Vander Peet - Schwering C.M.C., Schrama J.W. Vereijken P.F.G., Vesseur P.C., Everts H.,den Hartog L.A., Beynen A.C. (2001). Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, individual body weight, and body weight distribution within groups. J. Anim. Sci., 79: 301-308.Search in Google Scholar

Chen H., Mao X., He J., Yu B., Huang Z., Yu J., Zheng P., Chen D. (2013). Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr., 110: 1837-1848.Search in Google Scholar

Cole J.T., Fahey G.C. Jr., Merchen N.R., Patil A.r., Murray S.M., Hussein H.S., Brent J.L. Jr. (1999). Soybean hulls asadietary fiber source for dogs. J. Anim. Sci., 77: 917-924.Search in Google Scholar

Collier C.T., Carroll J.A. Callaway T.R., Arthington J.D. (2010). Oral administration of citrus pulp reduces gastrointestinal recovery of orally dosed Escherichia coli F18 in weaned pigs. J. Anim. Vet. Adv., 9: 2140-2145.Search in Google Scholar

Corneiro M., Lordelo M., Cunha L.F., Freire J. (2007). Microbial activity in the gut of piglets: II. Effect of fibre source and enzyme supplementation. Livest. Sci., 108: 262-265.Search in Google Scholar

Dulantha U., Anderson R.C., Mc Nab W., Moughan P.J., Wells J.M., Roy N.C. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr., 141: 769-776.Search in Google Scholar

Freire J.P.B., Guerreiro A.J.G., Cunha L.F., Aumaitre A. (2000). Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol., 87: 71-83.Search in Google Scholar

Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J.C., Van Immerseel F. (2006). Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol., 72: 946-949.Search in Google Scholar

Gerritsen R., Vander Aar P., Molist F. (2012). Insoluble nonstarch polysaccharides in diets for weaned piglets. J. Anim. Sci., 90 (Suppl. 4): 318-320.Search in Google Scholar

González-Oritz G., Pérez J.F., Hermes R.G., Molist F., Jiménez- Diaz R., Martín- Orúe M. (2014). Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus. Br. J. Nutr., 111: 633-642.Search in Google Scholar

Hanczakowska E., Świątkiewicz M., Białecka A. (2008). Pure cellulose asafeed supplement for piglets. Med. Weter., 64: 45-48.Search in Google Scholar

Hedemann M.S., Eskildsen M., Lærke H.N., Pedersen C., Lindberg J.E., Laurinen P., Bach Knudsen K.E. (2006). Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J. Anim. Sci., 84: 1375-1386.Search in Google Scholar

Herfel T., Jacobi S., Lin X., Van Heugten E., Fellner V., Odle J. (2013). Stabilized rice bran improves weaning pig performance viaaprebiotic mechanism. J. Anim. Sci., 91: 907-913.Search in Google Scholar

Hermes R.G., Molist F., Ywazaki M., Nofrarías M., Gomezde Segura A., Gasa J., Pérez J.F. (2009). Effect of dietary level of protein and fiber on the productive performance and health status of piglets. J. Anim. Sci., 87: 3569-3577.Search in Google Scholar

Hermes R.G., Molist F., Ywazaki M., Nofrarías M., Gomezde Segura A., Gasa J., Torrallardona D., Pérez J.F. (2010). Effects of type of cereal and fibre level on growth and parameters of the gastrointestinal tract in young pigs. Livest. Sci., 133: 225-228.Search in Google Scholar

Hopwood D.E., Pethick D.W., Hampson D.J. (2002). Increasing the viscosity of the intestinal contents stimulates proliferation of enterotoxigenic Escherichia coli and Brachyspira pilosicoli in weaner pigs. Br. J. Nutr., 88: 523-532.Search in Google Scholar

Högberg A., Lindberg J.E. (2004). Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion and gut environment in weaned piglets. Anim. Feed Sci. Technol., 116: 113-128.Search in Google Scholar

Högberg A., Lindberg J.E. (2006). The effect of level and type of cereal non-starch polysaccharides on the performance, nutrient utilization and gut environment of pigs around weaning. Anim. Feed Sci. Technol., 127: 200-219.Search in Google Scholar

Hu C.H., Xiao K., Luan Z.S., Song J. (2013). Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci., 91: 1094-1101.Search in Google Scholar

Jeaurond E.A., Rademacher M., Pluske J.R., Zhu C.H.,de Lange C.F.M. (2008). Impact of feeding fermentable proteins and carbohydrates on growth performance, gut health and gastrointestinal function of newly weaned pigs. Can. J. Anim. Sci., 88: 271-281.Search in Google Scholar

Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724-731.Search in Google Scholar

Kahlon T.S., Chow F.I. (2000). In vitro binding of bile acids by rice bran, oat bran, wheat bran and corn bran. Cereal Chem., 77: 518-521.Search in Google Scholar

Kim J.C., Mullan B.P., Hampson D.J., Pluske J.R. (2008). Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhea and reduces indices of protein fermentation in the gastrointestinal tract. Br. J. Nutr., 99: 1217-1225.Search in Google Scholar

Kim J.C., Hansen C.F., Mullan B.P., Pluske J.R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol., 173: 3-13.Search in Google Scholar

Kroismayr A., Neufeld K., Affentranger P. (2008). Einfluss einer neuartigen Lignocellulose auf Leistungsparameter in der Ferkelaufzucht. In: 7 BOKU-Symposium Tierernährung. Dezember 2008. Wien, pp. 118-122.Search in Google Scholar

Lallès J-P., Boudry G., Favier C.,le Flock N., Luron I., Montagne L., Oswald I.P., Pié S., Piel C., Sève B. (2004). Gut function and dysfunction in young pigs: physiology. Anim. Res., 53: 301-316.Search in Google Scholar

Mateos G.G., Martin F., Latorre M.A., Vicente B., Lázaro R. (2006). Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim. Sci., 82: 57-63.Search in Google Scholar

Mc Donald D.E., Pethick D.W., Mullan B.P., Hampson D.J. (2001). Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr., 186: 487-498.Search in Google Scholar

Molist F., Gómez de Segura A., Gasa J., Hermes R.G., Manzanilla E.G., Anguita M., Pérez J.F. (2009). Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and the microbial activity in early weaned piglets. Anim. Feed Sci. Technol., 149: 346-353.Search in Google Scholar

Molist F., Gómez de Segura A., Pérez J.F., Bhandari S.K., Krause D.O., Nyachoti C.M. (2010 a). Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88. Livest. Sci., 133: 214-217.10.1016/j.livsci.2010.06.067Search in Google Scholar

Molist F., Ywazaki M., Gómez de Segura A., Hermes R.G., Gasa J.G., Hernández F.P. (2010 b). Administration of loperamide and addition of wheat bran to the diets of weaner pigs decrease the incidence of diarrhea and enhance their gut maturation. Br. J. Nutr., 103: 879-885.10.1017/S000711450999263719889242Search in Google Scholar

Molist F., Hermes R.G., Gómez de Segura A., Martín- Orúe S.M., Gasa J., Manzanilla E.G., Pérez J.F. (2011). Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br. J. Nutr., 105: 1592-1600.Search in Google Scholar

Molist F., Manzanilla E.G., Pérez J.F. Nyachoti C.M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Br. J. Nutr., 108: 9-15.Search in Google Scholar

Molist F.,van Oostrum M., Pérez J.F., Mateos G.G., Nyachoti C.M., van der Aar P.J. (2014). Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol., 189: 1-10.Search in Google Scholar

Montagne L., Pluske J.R., Hampson D.J. (2003). Areview of interaction between dietary fibre and the intestinal mucosa, and their consequence on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol., 108: 95-117.Search in Google Scholar

Montagne L., Boudry G., Favier C., Le Huërou- Luron I., Lallès J-P. (2007). Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br. J. Nutr., 97: 45-57.Search in Google Scholar

Montagne L., Le Floc ’h N., Arturo - Schaan M., Foret R., Urdaci M.C., Le Gall M. (2012). Comparative effects of level of dietary fiber and sanitary conditions on the growth and health of weanling pigs. J. Anim. Sci., 90: 2556-2569.Search in Google Scholar

Pascoal L.A.F., Thomaz M.C., Watanabe P.H.,dos Santos U., Ezequiel J.M.B., Amorim A.B., Daniel E., Masson G.C.I. (2012). Fiber sources in diets for newly weaned piglets. R. Bras. Zootec., 41: 636-642.Search in Google Scholar

Pié S., Awati A., Vida S., Falluel I., Williams B.A., Oswald I.P. (2007). Effect of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific m RNAcontent in weaning piglets. J. Anim. Sci., 85: 673-683.Search in Google Scholar

Pieper R., Kröger S., Richter J.F., Wang J., Martin L., Bindelle J., Htoo J.K., Von Smolinski D., Vahjen J., Zentek J., Van Kessel A.G. (2012). Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr., 142: 661-667.Search in Google Scholar

Rezaei M., Karimi Torshizi M.A., Shariatmadari F. (2014). Inclusion of processed rice hulls as insoluble fiber in the diet on performance and digestive traits of Japanese quails. J. Anim. Sci. Adv., 4: 962-972.Search in Google Scholar

Schedle K., Plitzner C., Ettle T., Zhao L., Domig K.J. Windisch W. (2008). Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch. Anim. Nutr., 62: 141-151.Search in Google Scholar

Scheppach W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut (Suppl. 1): S35-S38.Search in Google Scholar

Schiavon S., Tagliapietra F., Bailoni L., Bortolozzo A. (2004). Effect of sugar beet pulp on growth and health status of weaned piglets. Ital. J. Anim. Sci., 3: 337-351.Search in Google Scholar

Serena A., Bach Knudsen K.E. (2007). Chemical and physicochemical characterisation of coproducts from the vegetable food and agro industries. Anim. Feed Sci. Technol., 139: 109-124.Search in Google Scholar

Skrabanja V., Kreft I., Golob T., Modic M., Ikeda S., Ikeda K., Kreft S., Bonafaccia G., Knapp M., Kosmelj K. (2004). Nutrient content in buckwheat milling fractions. Cereal Chem., 81: 172-176.Search in Google Scholar

Soufrant W.B. (2001). Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig. Anim. Feed Sci. Technol., 90: 93-102.Search in Google Scholar

Sunvold G.D., Hussein H.S., Fahey G.C., Merchen N.R., Reinhart G.A. (1995). In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, human, and pigs and ruminal fluid from cattle. J. Anim. Sci., 73: 3639-3648.Search in Google Scholar

Święch E., Tuśnio A., Taciak M., Boryczka M., Buraczewska L. (2012). The effects of pectin and rye on amino acid ileal digestibility, threonine metabolism, nitrogen retention, and morphology of the small intestine in young pigs. J. Anim. Feed Sci., 21: 89-106.Search in Google Scholar

Van Nevel C.J., Dierick N.A., Decuypere J.A., De Smet S.M. (2006). In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets. Arch. Anim. Nutr., 60: 477-500.Search in Google Scholar

Vente- Spreeuwenberg M.A.M., Verdonk J.M.A.J., Beynen A.C., Verstegen M.W.A. (2003). Interrelationships between gut morphology and faeces consistency in newly weaned piglets. Anim Sci., 77: 85-94.Search in Google Scholar

Weber T.E., Ziemer C.J., Kerr B.J. (2008). Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. J. Anim. Sci., 86: 871-881.Search in Google Scholar

Wellock I.J., Fortomaris P.D., Houdijk J.G.M., Wisemann J., Kyriazakis I. (2008). The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. Br. J. Nutr., 99: 520-530.Search in Google Scholar

Williams B., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207-227.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine