Open Access

5. MMP-2, TIMP-2, TAZ and MEF2a Transcript Expression in Osteogenic and Adipogenic Differentiation of Porcine Mesenchymal Stem Cells


Cite

Arnold M.A., Kim Y., Czubryt M.P., Phan D., Mc Anally J., Qi X., Shelton J.M., Richardson J.A., Bassel-Duby R., Olson E.N. (2007). MEF2Ctranscription factor controls chondrocyte hypertrophy and bone development. Dev. Cell, 12: 377-389.Search in Google Scholar

Boxall S.A., Jones E. (2012). Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int., 2012: 975871.Search in Google Scholar

Brew K., Dinakarpandian D., Nagase H. (2000). Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim. Biophys. Acta, 1477: 267-283.Search in Google Scholar

Chang S.C., Chuang H., Chen Y.R., Yang L.C., Chen J.K., Mardini S.,Chung H.Y., Lu Y.L., Ma W.C., Lou J. (2004 a). Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J. Surg. Res., 119: 85-91.10.1016/j.jss.2003.08.00315126087Search in Google Scholar

Chang S., Mc Kinsey T.A., Zhang C.L., Richardson J.A., Hill J.A., Olson E.N.(2004 b). Histone deacetylases 5 and 9 govern responsiveness of the heart toasubset of stress signals and play redundant roles in heart development. Mol. Cell. Biol., 24: 8467-8476.10.1128/MCB.24.19.8467-8476.200451675615367668Search in Google Scholar

Chang S., Young B.D., Li S., Qi X., Richardson J.A., Olson E.N. (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell, 126: 321-334.Search in Google Scholar

Chen Y.H., Yeh F.L., Yeh S.P., Ma H.T., Hung S.C., Hung M.C., Li L.Y. (2011). Myocyte enhancer factor-2 interacting transcriptional repressor MITR, isaswitch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferatoractivated receptorγ-2. J. Biol. Chem., 286: 10671-10680.Search in Google Scholar

Cho H.H., Shin K.K., Kim Y.J., Song J.S., Kim J.M., Bae Y.C., Kim C.D., Jung J.S. (2010). NF-kappa Bactivation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZexpression. J. Cell. Physiol., 223: 168-177.Search in Google Scholar

Chomczynski P. (1993). Areagent for the single-step simultaneous isolation of RNA, DNAand proteins from cell and tissue samples. Biotechniques, 15: 532-537.Search in Google Scholar

Cronwright G., Le Blanc K., Götherström C., Darcy P., Ehnman M., Brodin B. (2005). Cancer/testis antigen expression in human mesenchymal stem cells: Down-regulation of SSXimpairs cell migration and matrix metalloproteinase 2 expression. Cancer Res., 65: 2207-2215.Search in Google Scholar

D’Amour K.A., Bang A.G., Eliazer S., Kelly O.G., Agulnick A.D., Smart N.G., Moorman M.A., Kroon E., Carpenter M.K., Baetge E.E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol., 24: 1392-1401.Search in Google Scholar

Daley W.P., Peters S.R., Larsen M. (2008). Extracellular matrix dynamics in development and regenerative medicine. J. Cell. Sci., 121: 255-264.Search in Google Scholar

De Becker A., Van Hummelen P., Bakkus M., Vande Broek I., De Wever J., De Waele M., Van Riet I. (2007). Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 92: 440-449.Search in Google Scholar

Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krau - se D., Deans R., Keating A., Prockop D.J., Horwitz E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8: 315-317.Search in Google Scholar

Ezzelarab M., Ezzelarab C., Wilhite T., Kumar G., Hara H., Ayares D., Coop - er D.K. (2011). Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses. Xenotransplantation, 18: 183-195.Search in Google Scholar

Gonzalez-Rey E., Anderson P., Gonzalez M.A., Rico L., Büscher D., Delgado M. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 58: 929-939.Search in Google Scholar

Hayashi M., Kim S.W., Imanaka- Yoshida K., Yoshida T., Abel E.D., Eliceiri B., Yang Y., Ulevitch R.J., Lee J.D. (2004). Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J. Clin. Invest., 113: 1138-1148.Search in Google Scholar

Hong J.H., Hwang E.S., Mc Manus M.T., Amsterdam A., Tian Y., Kalmukova R., Mueller E., Benjamin T., Spiegelman B.M., Sharp P.A., Hopkins N., Yaf- fe M.B. (2005). TAZ,atranscriptional modulator of mesenchymal stem cell differentiation. Science, 12: 1074-1078.Search in Google Scholar

Hong D., Chen H.X., Xue Y., Li D.M., Wan X.C., Ge R., Li J.C. (2009). Osteoblastogenic effects of dexamethasone through upregulation of TAZexpression in rat mesenchymal stem cells. J. Steroid. Biochem. Mol. Biol., 116: 86-92.Search in Google Scholar

Hoshiba T., Kawazoe N., Chen G. (2012). The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials, 33: 2025-2031.Search in Google Scholar

Hu E., Tontonoz P., Spiegelman B.M. (1995). Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγand C/EBPα. Proc. Nat. Acad. Sci. USA., 92: 9856- -9860.Search in Google Scholar

Itakura S., Asari S., Rawson J., Ito T., Todorov I., Liu C.P., Sasaki N., Kandeel F.,Mullen Y. (2007). Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHDin the rat. Am. J. Transplant., 7: 336-346.Search in Google Scholar

Jackson K.A., Majka S.M., Wang H., Pocius J., Hartley C.J., Majesky M.W., Ent- man M.L., Michael L.H., Hirschi K.K., Goodell M.A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest., 107: 1395-1402.Search in Google Scholar

Kasper G., Glaeser J.D., Geissler S., Ode A., Tuischer J., Matziolis G., Perka C., Duda G.N. (2007). Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells, 25: 1985-1994.Search in Google Scholar

Kolf C.M., Cho E., Tuan R.S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther., 9: 204.Search in Google Scholar

Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimi- zu Y., Bronson R.T., Gao Y.H., Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., Kishimoto T. (1997). Targeted disruption of Cbfa1 results inacomplete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89: 755-764.Search in Google Scholar

Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.Search in Google Scholar

Lecka- Czernik B., Moerman E.J., Grant D.F., Lehmann J.M., Manolagas S.C., Jil- ka R.L. (2002). Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology, 143: 2376-2384.Search in Google Scholar

Li B., Shi M., Li J., Zhang H., Chen B., Chen L., Gao W., Giuliani N., Zhao R.C. (2007). Elevated tumor necrosis factor-alpha suppresses TAZexpression and impairs osteogenic potential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev., 16: 921-930.Search in Google Scholar

Li J., Ezzelarab M.B., Cooper D.K.C. (2012). Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation, 19: 273-285.Search in Google Scholar

Lin F., Cordes K., Li L., Hood L., Couser W.G., Shankland S.J., Igarashi P. (2003). Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J. Am. Soc. Nephrol., 14: 1188-1199.Search in Google Scholar

Lipka D., Boratyński J. (2008). Metalloproteinases. Structure and function (in Polish). Adv. Hyg. Exp. Med., 62: 328-336.Search in Google Scholar

Lisignoli G., Cristino S., Piacentini A., Cavallo C., Caplan A.I., Facchini A. (2006). Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of CD44 and CD54. J. Cell. Physiol., 207: 364 -373.Search in Google Scholar

Lovelock J.D., Baker A.H., Gao F., Dong J.F., Bergeron A.L., Mc Pheat W., Sivasu - bramanian N., Mann D.L. (2005). Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am. J. Physiol. Heart. Circ. Physiol., 288: H461-468.Search in Google Scholar

Łukaszewicz M., Mroczko B., Szmitkowski M. (2008). The role of metalloproteinases and their inhibitors in pancreatic cancer (in Polish). Adv. Hyg. Exp. Med., 62: 141-147.Search in Google Scholar

Mannello F. (2006). Multipotent mesenchymal stromal cell recruitment, migration, and differentiation: what have matrix metalloproteinases got to do with it? Stem Cells, 24: 1904-1907.10.1634/stemcells.2005-060816675595Search in Google Scholar

Mannello F., Tonti G.A., Papa S. (2006). Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells, 24: 475- 481.Search in Google Scholar

Mao J.J., Marion N.W. (2009). Tissues engineering using mesenchymal stem cells. In: Essential Stem Cell Methods, Lanza R., Klimanskaya I. (eds.). Elsevier, Oxford, pp. 297-313.Search in Google Scholar

Miller C.T., Swartz M.E., Khuu P.A., Walker M.B., Eberhart J.K., Kimmel C.B. (2007). Mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish. Dev. Biol., 308: 144-157.Search in Google Scholar

Naya F.J., Black B.L., Wu H., Bassel-Duby R., Richardson J.A., Hill J.A., Ol - son E.N. (2002). Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat. Med., 8: 1303-1309.Search in Google Scholar

Opiela J., Samiec M. (2013). Characterization of mesenchymal stem cells and their application in experimental embryology. Pol. J. Vet. Sci., 16: 593-599.Search in Google Scholar

Opiela J., Bartel Ż., Romanek J., Wieczorek J., Wilczek P. (2013 a). The quality ofporcine mesenchymal stem cells and their osteo- and adipogenic cell derivatives - the level of proapoptotic BADprotein expression. Ann. Anim. Sci., 13: 753-763.10.2478/aoas-2013-0050Search in Google Scholar

Opiela J., Samiec M., Bochenek M., Lipiński D., Romanek J., Wilczek P. (2013 b). DNAaneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Rep., 15: 425-434.10.1089/cell.2012.009923961765Search in Google Scholar

Page-Mc Caw A., Ewald A.J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodeling. Nat. Rev. Mol. Cell Biol., 8: 221-233.Search in Google Scholar

Panepucci R.A., Siufi J.L., Silva W.A. Jr., Proto- Siquiera R., Neder L., Orella - na M., Rocha V., Covas D.T., Zago M.A. (2004). Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells, 22: 1263-1278.Search in Google Scholar

Philip D., Chen S.S., Fitzgerald W., Orenstein J., Margolis L., Kleinman H.K. (2005). Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells, 23: 288-296.Search in Google Scholar

Potthoff M.J., Olson E.N. (2007). MEF2:acentral regulator of diverse developmental programs. Development, 134: 4131-4140.Search in Google Scholar

Prockop D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276: 71-74.Search in Google Scholar

Rho G.J., Kumar B.M., Balasubramanian S.S. (2009). Porcine mesenchymal stem cells - current technological status and future perspective. Front Biosci., 14: 3942-3961.Search in Google Scholar

Rosen E.D., Sarraf P., Troy A.E., Bradwin G., Moore K., Milstone D.S., Spiegel- man B.M., Mortensen R.M. (1999). PPARgamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell, 4: 611-617.Search in Google Scholar

Rosland G.V., Svendsen A., Torsvik A., Sobala E., Mc Cormack E., Immervoll H., Mysliwietz J., Tonn J.C., Goldbrunner R., Lønning P.E., Bjerkvig R., Schichor C., (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res., 69: 5331-5339.Search in Google Scholar

Scheideler M., Elabd C., Zaragosi L.E., Chiellini C., Hackl H., Sanchez- Cabo F., Yadav S., Duszka K., Friedl G., Papak C., Prokesch A., Windhager R., Ail- haud G., Dani C., Amri E.Z., Trajanoski Z. (2008). Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics, 9: 340.Search in Google Scholar

Shalizi A., Gaudilliere B., Yuan Z., Stegmuller J., Shirogane T., Ge Q., Tan Y., Schulman B., Harper J.W., Bonni A. (2006). Acalcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science, 311: 1012-1017.Search in Google Scholar

Shen H., Mc Elhinny A.S., Cao Y., Gao P., Liu J., Bronson R., Griffin J.D., Wu L. (2006). The Notch coactivator, MAML1, functions asanovel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev., 20: 675-688.Search in Google Scholar

Shore P., Sharrocks A.D. (1995). The MADS-box family of transcription factors. Eur. J. Biochem., 229: 1-13.Search in Google Scholar

Son B.R., Marquez- Curtis L.A., Kucia M., Wysoczyński M., Turner A.R., Rataj- czak J., Ratajczak M.Z., Janowska-Wieczorek A. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24: 1254-1264.Search in Google Scholar

Takada I., Kouzmenko A.P., Kato S. (2010). PPAR-γsignaling crosstalk in mesenchymal stem cells. PPAR Res., 2010: 341671.Search in Google Scholar

Takada I., Yogiashi Y., Kato S. (2012). Signaling crosstalk between PPARγand BMP2 in mesenchymal stem cells. PPAR Res., 2012: 607141.Search in Google Scholar

Vanhoutte D., Heymans S. (2010). TIMPs and cardiac remodeling: 'Embracing the MMP-independent- side of the family'. J. Mol. Cell Cardiol., 48: 445-453.Search in Google Scholar

Verzi M.P., Agarwal P., Brown C., Mc Culley D.J., Schwarz J.J., Black B.L. (2007). The transcription factor MEF2Cis required for craniofacial development. Dev. Cell, 12: 645-652.Search in Google Scholar

Visse R., Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res., 92: 827-839.Search in Google Scholar

Vu T.H., Werb Z. (2000). Matrix metalloproteinases: Effectors of development and normal physiology. Genes Dev., 14: 2123-2133.Search in Google Scholar

Wang D.Z., Valdez M.R., Mc Anally J., Richardson J., Olson E.N. (2001). The Mef2c gene isadirect transcriptional target of myogenic b HLHand MEF2 proteins during skeletal muscle development. Development, 128: 4623-4633.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine