Cite

Abdulmalek K., Ashur F., Ezer N., Fengchun Y., Magder S., Hussain S.N.A. (2001). Differential expression of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am. J. Physiol., 281: L582- L590.Search in Google Scholar

Abelson A.E. (1976). Altitude and fertility. Human Biology, 48: 83-92.Search in Google Scholar

Adedara I.A., Nanjappa M.K., Farombi E.O., Akingbemi B.T. (2014). Aflatoxin B1 disrupts the androgen biosynthetic pathway in rat Leydig cells. Food Chem. Toxicol., 65: 252-259.Search in Google Scholar

Baker J., Hardy M.P., Zhou J., Bondy C., Lupu F., Belleu A.R., Efstratiadis A. (1996). Effects of an IGF-Igene null mutation on mouse reproduction. Mol. Endocrinol., 10: 903-918.Search in Google Scholar

Berensztein E.B., Baquedano M.A.S., Pepe C.M., Costanzo M., Saraco N.I., Pon-zio R., Rivarola M.A., Belgorosky A. (2008). Role of IGFs and insulin in the human testis during postnatal activation: differentiation of steroidogenic cells. Paediatric Research, 63: 662-666.Search in Google Scholar

Blash S., Melican D., Gavin W. (2000). Cryopreservation of epididymal sperm obtained at necropsy from goats. Theriogenology, 54: 899-905.Search in Google Scholar

Bomhard E.M., Gelbke H.P. (2013). Hypoxaemia affects male reproduction:acase study of how to differentiate between primary and secondary hypoxic testicular toxicity due to chemical exposure. Arch. Toxicol., 87: 1201-1218.Search in Google Scholar

Bruder E.D., Lee J.J., Widmaier E.P., Raff H. (2007). Microarray and real-time PCRanalysis of adrenal gland gene expression in the 7-day-old rat: effects of hypoxia from birth. Physiol. Genomics, 29: 193-200.Search in Google Scholar

Bustos - Obregón E., Olivares A. (1982). Efecto de la hipoxia en la reproducción demamíferos. El hombreylos ecosistemas de montaña. UNESCO, pp. 37-98.Search in Google Scholar

Bustos - Obregón E., Esveile C., Contreras J., Maurer I., Sarabia L. (2006). Effects of chronic simulated hypobaric hypoxia on mouse spermatogenesis. Int. J. Morphol., 24: 481-488.Search in Google Scholar

Campbell R.C., Dott H.M., Glover T.D. (1956). Nigrosin eosin asastain for differentiating live and dead spermatozoa. J. Agricult. Sci., 48: 1-8.Search in Google Scholar

Cheviron Z.A., Brumfield R.T. (2012). Genomic insights into adaptation to high-altitude environments. Heredity, 108: 354-361.Search in Google Scholar

Cheviron Z.A., Whitehead A., Brumfield R.T. (2008). Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol. Ecol., 17: 4556-4569.Search in Google Scholar

Chung J.Y., Kim Y.J., Kim J.Y., Lee S.G., Park J.E., Kim R.W., Yoon Y.D., Yoo K.S., Yoo Y.H., Kim J.M. (2011). Benzo[a]pyrene reduces testosterone production in rat Leydig cells viaadirect disturbance of testicular steroidogenic machinery. Environ. Health Perspect., 119: 1569-1574.Search in Google Scholar

Cikutovic M., Fuentes N., Bustos - Oregon E. (2009). Effect of intermittent hypoxia on the reproduction of rats exposed to high altitude in Chilean Altiplano. High Alt. Med. Biol., 10: 357-363.Search in Google Scholar

Çoksevim B., Narin F., Yaba G. (2006). The effects of mid-altitude on endocrine profile. Biol. Sport, 23: 33-40.Search in Google Scholar

Colon E., Svechnikov K.V., Carlsson - Skwirut C., Bang P., Soder O. (2005). Stimulation of steroidogenesis in immature rat Leydig cell evoked by interleukin-1alpha is potentiated by growth hormone and insulin-like growth factors. Endocrinol., 146: 221-230.Search in Google Scholar

Dombrowicz D., Hooghe - Peters E.L., Gothot A., Sente B., Vanhaelst L., Clos -set J., Hennen G. (1992). Cellular localization of IGF Iand IGF IIm RNAs in immature hypophysectomized rat testis and epididymis after in vivo hormonal treatment. Arch. Int. Physiol. Biochim. Biophys., 100: 303-308.Search in Google Scholar

Fagundes N.J.R., Salzano F.M., Batzer M.A., Deininger P.L., Bonatto S.L. (2005). Worldwide genetic variation at the 3-UTRregion of the LDLRgene: possible influence of natural selection. Ann. Hum. Genetics, 69: 389-400.Search in Google Scholar

Farias J.G., Bustos - Obregén E., Orellana R., Bucarey J.L., Quiroz E., Reyes J.G. (2005). Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Andrologia, 37: 47-52.Search in Google Scholar

Garcia - Hjarles M.A. (1989). Sperm count and seminal biochemistry of high altitude inhabitants and patients with chronic altitude sickness. Arch. Biol. Med. Exp., 22: 61-67.Search in Google Scholar

Gasco M., Rubio J., Chung A., Villegas L., Gonzales G.F. (2003). Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats. Andrologia, 35: 368-374.Search in Google Scholar

Ge R.S., Dong Q., Sottas C.M., Papadopoulos V., Zirkin B.R., Hardy M.P. (2006). In search of rat stem Leydig cell: identification, isolation, and lineage-specific development. Proc. Natl. Acad. Sci. USA, 103: 2719-2724.Search in Google Scholar

Gosney J.R. (1984). Effects of hypobaric hypoxia on the Leydig cell population of the testis of the rat. J. Endocrinol., 103: 59-62.Search in Google Scholar

Hanukoglu I. (1992). Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid. Biochem. Mol. Biol., 43: 779-804.Search in Google Scholar

Leach R.M., Treacher D.F. (1998). Oxygen transport-2. Tissue hypoxia. British Med. J., 317: 1370-1373.Search in Google Scholar

Luo D.Y., Yang G., Liu J.J., Yang Y.R., Dong Q. (2011). Effects of varicocele on testosterone, apoptosis and expression of St ARm RNAin rat Leydig cells. Asian. J. Androl., 13: 287-291.Search in Google Scholar

Myers D.A., Hyatt K., Mlynarczyk M., Brid I.M., Ducsay C. (2005). Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 289: R1707-R1714.Search in Google Scholar

Nakayama Y., Yamamoto T., Abe S.I. (1999). IGF-I, IGF-IIand insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int. J. Dev. Biol., 43: 343-347.Search in Google Scholar

Nelson M.L., Cons J.M., Hodgdon G.E. (1975). Effects of simulated high altitude (3800 m) on reproductive function in the pregnant rat. Environ Physiol Biochem., 5: 65-72.Search in Google Scholar

Okumura A., Fuse H., Kawauchi Y., Mizuno I., Akashi T. (2003). Changes in male reproductive function after high altitude mountaineering. High Alt. Med. Biol., 4: 349-353.Search in Google Scholar

Park E.K., Chu J.P., Parkinson T., Cockrem J.F., Han K.S., Blair H.T., Kim T.Y., Yoon J.T., Lee Y.S. (2010). Rams genetically superior for IGF-Ido not exhibit improved male reproductive traits. Anim. Reprod. Sci., 118: 223-230.Search in Google Scholar

Parraguez V.H., Urquieta B., Perez L., Castellaro G., Reyes M.D.L., Torres - Ro -vira L., Aguado - Martinez A., Astiz S., Gonzalez - Bulnes A. (2013). Fertility inahigh-altitude environment is compromised by luteal dysfunction: the relative roles of hypoxia and oxidative stress. Reprod. Biol. Endocrinol., 11: 24-35.Search in Google Scholar

Peters M.A.J., Mol J.A.,van Wolferen M.E., Oosterlaken- Dijksterhuis M.A., Teerds K.J.,van Sluijs F.J. (2003). Expression of insulin-like growth factor (IGF) system and steroidogenic enzymes in canine testis tumors. Reprod. Biol. Endocrinol., 1, p. 22.Search in Google Scholar

Reeves J.T., Weil J.V. (2001). Chronic mountain sickness. Aview from the crow’s nest. Adv. Exp. Med. Biol., 502: 419-437.Search in Google Scholar

Saxena D.K. (1995). Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int. J. Biometeorol., 38: 137-140.Search in Google Scholar

Vargas V.E., Kaushal K.M., Monau T., Myers D.A., Ducsay C. A. (2011). Long-term hypoxia enhances cortisol biosynthesis in near-term ovine fetal adrenal cortical cells. Reprod. Sci., 18: 277-285.Search in Google Scholar

Velickovic L.J., Stefanovic V. (2014). Hypoxia and spermatogenesis. Int Urol Nephrol., 46: 887- 894.Search in Google Scholar

Verratti V., Giulio D. (2012). High-altitude hypoxia and reproduction: is there an environmental limit to the human male reproductive system? Sport Sci. Health, 7: 39-40.Search in Google Scholar

Verratti V., Berardinelli F., Di Giulio C., Bosco G., Cacchio M., Pellicciot -ta M., Nicolai M., Martinotti S., Tenaglia R. (2008). Evidence that chronic hypoxia causes reversible impairment on male fertility. Asian J. Androl., 10: 602-606. Search in Google Scholar

Wang G.M., O ’ Shaughnessy P.J., Chubb C., Robaire B., Hardy M.P. (2003). Effects of insulin-like growth factor Ion steroidogenic enzyme expression levels in mouse Leydig cells. Endocrinol., 144: 5058-5064.Search in Google Scholar

Wang H., Wang Q., Zhao X.F., Liu P., Meng X.H., Yu T., Ji Y.L., Zhang H., Zhang C., Zhang Y., Xu D.X. (2010). Cypermethrin exposure during puberty disrupts testosterone synthesis via down regulating St ARin mouse testes. Arch. Toxicol., 84: 53-61.Search in Google Scholar

Zhang G.L., Feng Y., Dai D.Z., Cheng Y.S., Zhang C., Dai Y. (2012). CPU86017-RSattenuate hypoxia-induced testicular dysfunction in mice by normalizing androgen biosynthesis genes and pro-inflammatory cytokines. Acta Pharmacol. Sinic., 33: 470-478.Search in Google Scholar

Zhang G.L., Dai D.Z., Zhang C., Dai Y. (2013). Apocynin and raisanberine alleviate intermittent hypoxia induced abnormal St ARand 3β-HSDand low testosterone by suppressing endoplasmic reticulum stress and activated p66Shc in rat testes. Reprod. Toxicol., 36: 60-70. Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine