Cite

1. Raisz L – Pathogenesis of osteoporosis: concepts, conflicts and prospects, J Clin Invest, 2005; 115:3318-332510.1172/JCI27071129726416322775Search in Google Scholar

2. Rizzoli R – Atlas of Postmenopausal Osteoporosis, Current Medicine Group, London, United Kingdom, 201010.1007/978-1-907673-28-3Search in Google Scholar

3. Svedbom A, Hernlund E, Ivergård M et al. – Osteoporosis in the European Union: a compendium of country-specific reports, Archives of Osteoporosis, 2013, 8:13710.1007/s11657-013-0137-0388049224113838Search in Google Scholar

4. Gordon MD, Nusse R – Wnt Signalling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors, J BiolChem, 2006; 281:22429-2243310.1074/jbc.R60001520016793760Search in Google Scholar

5. Mikels AJ, Nusse R – Wnts as ligands: processing, secretion and reception, Oncogene, 2006; 25:7461-746810.1038/sj.onc.121005317143290Open DOISearch in Google Scholar

6. Coudreuse D, Korswagen HC – The making of Wnt: new insights into Wnt maturation, sorting and secretion, Development, 2007; 134:3-1210.1242/dev.0269917138665Search in Google Scholar

7. Kestler HA, Kühl M – From individual Wnt pathways towards a Wnt signalling network, Philos Trans R Soc Lond B Biol Sci, 2008; 363:1333-134710.1098/rstb.2007.2251261012218192173Search in Google Scholar

8. Rao TP, Kühl M – An Updated Overview on Wnt Signaling Pathways A prelude for more, Cric Res, 2010; 106:1798-180610.1161/CIRCRESAHA.110.21984020576942Search in Google Scholar

9. MacDonald BT, Tamai K, He X – Wnt/β-catenin signaling: components, mechanisms, and diseases, Developmental Cell, 2009; 17:9-2610.1016/j.devcel.2009.06.016286148519619488Search in Google Scholar

10. Clevers H – Wnt/β-Catenin Signalling in Development and Disease, Cell, 2006; 127:469-48010.1016/j.cell.2006.10.01817081971Search in Google Scholar

11. Logan CY, Nusse R – The Wnt Signalling Pathway in Development and Disease, Ann Rev Cell Dev Biol, 2004; 20:781-81010.1146/annurev.cellbio.20.010403.11312615473860Open DOISearch in Google Scholar

12. De A – Wnt/Ca2+ signalling pathway: a brief overview, Acta Biochimica et Biophysica Sinica, 2011; 43:745-75610.1093/abbs/gmr07921903638Open DOISearch in Google Scholar

13. Thrasivoulou C, Millar M, Ahmed A – Activation of intracellular calcium by multiple Wnt ligands and translocation of β-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/β-catenin pathways, J Biol Chem, 2013; 288:35651-3565910.1074/jbc.M112.437913386161724158438Search in Google Scholar

14. Komiya Y, Habas R – Wnt signal transduction pathways, Organogenesis, 2008, 4:68-7510.4161/org.4.2.5851263425019279717Search in Google Scholar

15. Saadeddin A, Babaei-Jadidi R, Spencer-Dene B et al. – The Links between Transcription, β-catenin/JNK Signaling and Carcinogenesis, Molecular Cancer Research, 2009; 7:1189-119610.1158/1541-7786.MCR-09-002719671687Open DOISearch in Google Scholar

16. Kikuchi A, Yamamoto H, Kishida S – Multiplicity of the interactions of Wnt proteins and their receptors, Cell Signal, 2007; 19:659-67110.1016/j.cellsig.2006.11.00117188462Open DOISearch in Google Scholar

17. Jin YR, Yoon JK – The R-spondin family of proteins: emerging regulators of Wnt signalling, Int J Biochem Cell Biol, 2012; 44:1055-106110.1016/j.biocel.2012.09.006349601822982762Search in Google Scholar

18. Glinka A, Dolde C, Kirsch N et al. – LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling, EMBO reports, 2011; 12:1055-106110.1038/embor.2011.175318534721909076Open DOISearch in Google Scholar

19. Kawano Y, Kypta R – Secreted antagonists of the Wnt signalling pathway, J Cell Sci, 2003; 166:2627-263410.1242/jcs.0062312775774Search in Google Scholar

20. Sung-Ho K, Jung SH, Jeong-Chae L – Crucial roles of canonical Runx2-dependent pathway on Wnt1-induced osteoblastic differentiation of human periodontal ligament fibroblasts, Mol Cell Biochem, 2015; 402:213-22310.1007/s11010-015-2329-y25618247Search in Google Scholar

21. Maeda A, Ono M, Holmbeck K et al. – WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt signalling, J Biol Chem, 2015; 290:14004-14018Search in Google Scholar

22. French DM, Kaul RJ, D’Souza AL – WISP-1 Is an Osteoblastic Regulator Expressed During Skeletal Development and Fracture Repair, Am J Pathol, 2004; 165:855-86710.1016/S0002-9440(10)63348-2Search in Google Scholar

23. Mitsuaki O, Colette AI, Tina MK et al. - WISP-1/CCN4 Regulates Osteogenesis by Enhancing BMP-2 Activity, J Bone Miner Res, 2011; 26:193-208Search in Google Scholar

24. Wollik B et al. – Mutations in WNT1 Cause Different Forms of Bone Fragility, Am J Hum Genet, 2013; 92:565-574Search in Google Scholar

25. Laine CM, Joeng KS, Campeau P et al. – WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta, N Engl J Med, 2013; 368, 1809-181610.1056/NEJMoa1215458370945023656646Search in Google Scholar

26. Okamoto M, Udagawa N, Uehara S et al. – Noncanonical Wnt5a enhances Wnt/β-catenin signalling during osteoblastogenesis, Nature Scientific Reports; 2014, 4:449310.1038/srep04493396715224670389Search in Google Scholar

27. Chen J, Tu X, Esen E et al. – Wnt7B Promotes Bone Formation in part through mTORC1, PLOS Genetics, 2014; 10:1-13Search in Google Scholar

28. Friedman MS, Oyserman SM, Hankenson KD – Wnt11 Promotes Osteoblast Maturation and Mineralization through R-spondin 2, J Biol Chem, 2009; 284:14117-1412510.1074/jbc.M808337200268286019213727Search in Google Scholar

29. Gori F, Lerner U, Ohlsson C et al. – A new Wnt on the bone: Wnt16, cortical bone thickness, porosity and fractures, Nature BoneKEy Reports; 2015; 4:1-6Search in Google Scholar

30. Onal M, Piemontese M, Xiong J et al. – Suppression of Autophagy in Osteocytes Mimics Skeletal Aging, J Biol Chem, 2013; 288:17432-17440Search in Google Scholar

31. Nollet M, Santucci-Darmanin S, Breuil V et al. – Autophagy in osteoblasts is involved in mineralization and bone homeostasis, Autophagy, 2014; 10:11:1965-197710.4161/auto.36182450269425484092Open DOISearch in Google Scholar

32. Gao C, Cao W, Bao L et al. – Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation, Nature Cell Biology, 2010; 12:781-79010.1038/ncb208220639871Open DOISearch in Google Scholar

33. Baarsma HA, Königshoff M, Gosens R – The Wnt signalling pathway from ligand secretion to gene transcription: Molecular mechanisms and pharmacological targets, Pharmacol Ther, 2013; 138:66-8310.1016/j.pharmthera.2013.01.00223328704Search in Google Scholar

34. Holdsworth G, Slocombe P, Doyle C et al. – Characterization of the Interaction of Sclerostin with the Low Density Lipoprotein Receptor-related Protein (LRP) Family of Wnt Co-receptors, J Biol Chem, 2012; 287:26464-26477Search in Google Scholar

35. Minisola G, Iuliano A, Prevete I – Emerging therapies for osteoporosis, Reumatismo, 2014; 66:112-12410.4081/reumatismo.2014.78425069493Search in Google Scholar

36. MacNabb C, Patton D, Hayes JS - Sclerostin Antibody Therapy for the Treatment of Osteoporosis: Clinical Prospects and Challenges, Journal of Osteoporosis, 2016; 1-2210.1155/2016/6217286489959727313945Search in Google Scholar

37. Cosman F, Crittenden DB, Adachi JD et al. - Romosozumab Treatment in Postmenopausal Women with Osteoporosis, N Eng J Med, 2016; 375:1532-1543Search in Google Scholar

38. Sugiyama T, Torio T, Miyajima T et al. - Romosozumab and blosozumab: alternative drugs of mechanical strain-related stimulus toward a cure for osteoporosis, Frontiers in Endocrinology, 2015; 6:1-4Search in Google Scholar

39. Fulciniti M, Tassone P, Hideshima T et al. - Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma, Blood Journal, 2009; 114:371-379Search in Google Scholar

40. Goldstein SD, Trucco M, Guzman WB et al. - A monoclonal antibody against the Wnt signaling inhibitordickkopf-1 inhibits osteosarcoma metastasis in a preclinical model, 2016; Oncotarget, 7:21114-2112310.18632/oncotarget.8522500827227049730Search in Google Scholar

41. Betts AM, Clark TH, Yang J et al. – The application of target information and preclinical pharmacokinetic/pharmacodynamic modelling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis, 2010, J Pharmacol Exp Ther, 333:2–1310.1124/jpet.109.16412920089807Search in Google Scholar

42. Florio M, Gunasekaran K, Stolina M - A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair, Nature Communications, 201; 7:1-1410.1038/ncomms11505489498227230681Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other