Cite

1. Mebs D. Venomous and Poisonous Animals. A Handbook for Biologists, Toxicologists and Toxinologists, Physicians and Pharmacists. 1st Ed. Medpharm Scientific Publisher, Boca Raton: Stuttgart, Germany CRC Press. 2002:2.Search in Google Scholar

2. Karmakar RN. Forensic Medicine and Toxicology, Oral, Practical & M.C.Q. 3rd Edition. Academic Publishers, Published by Bimal Kumar Dhur, Kolkta, India. 2010:57.Search in Google Scholar

3. http://www.toxinology.org/Search in Google Scholar

4. Birell GW, Earl S, Masci P. et al. Molecular diversity in venom from the Australian Brown snake, Pseudonaja textilis. Mol Cell Proteomics. 2006;5:379-389.10.1074/mcp.M500270-MCP200Search in Google Scholar

5. Calvete JJ, Juarez P, Sanz L. Snake venomics, strategy and applications. J Mass Spectrom. 2007;42:1405-1414.10.1002/jms.1242Search in Google Scholar

6. Smith CG, Vane JR. The discovery of captopril. FASEB (Fed Am Soc Exp Biol) J. 2003;17:799-789.Search in Google Scholar

7. Bryan J. From snake venom to ACE inhibitor. The discovery and rise of captopril. Pharm J. 2009;282:455-456.Search in Google Scholar

8. Chippaux JP, Williams V, White J. Snake venom variability: methods of study, results and interpretation. Toxicon. 1991;29:1279-1303.10.1016/0041-0101(91)90116-9Search in Google Scholar

9. Bas M, Adams V, Suvorava T. Nonallergic angioedema; role of bradykinin. Allergy. 2007;62:842-856.10.1111/j.1398-9995.2007.01427.xSearch in Google Scholar

10. Craik DJ, Schroeder CI. Peptides from Mamba Venom as Pain Killers. Angew Chem Int Ed. 2013;52:3071-3073.10.1002/anie.201209851Search in Google Scholar

11. Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed. 2015;5(4):275-276.10.1016/S2221-1691(15)30344-0Search in Google Scholar

12. Vyas VK, Brahmbhatt K, Bhatt H, Parmar U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed. 2013;3(2):156-162.10.1016/S2221-1691(13)60042-8Search in Google Scholar

13. Finn R. Snake venom protein paralyzes cancer cells. J Natl Cancer Inst. 2001;93(4):261-262.10.1093/jnci/93.4.26111181769Search in Google Scholar

14. Al-Sadoon M, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: Molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol. 2013;284:129-136.10.1016/j.cellimm.2013.07.01623973876Search in Google Scholar

15. El-Refael M, Sarkar N. Snake venom inhibits the growth of mouse mammary tumor cells in vitro and in vivo. Toxicon. 2009;54:33-41.10.1016/j.toxicon.2009.03.01719327376Search in Google Scholar

16. Das T, Bhattacharya S, Biswas A. Inhibition of leukemic U937 cell growth by induction of apoptosis, cell cycle arrest and suppression of VEGF, MMP-2 and MMP-9 activities by cytotoxin protein NN-32 purified from Indian spectacled cobra (Naja naja) venom. Toxicon. 2013;65:1-4.10.1016/j.toxicon.2013.01.00423337397Search in Google Scholar

17. Gordaliza M. Natural products as leads to anticancer drugs. Clin Trans Oncol. 2007;9:767-776.10.1007/s12094-007-0138-918158980Search in Google Scholar

18. Samy RP, Chow VTK et al. Antimicrobial Proteins from Snake Venoms: Direct Bacterial Damage and Activation of Innate Immunity against Staphylococcus aureus Skin Infection. Curr. Med. Chem. 2011;18(33):5104-5113.Search in Google Scholar

19. Costa Torres AF, Dantas RT, Toyama MH et al. Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phosholipase A2 and L-amino acid oxidase. Toxicon, 2010;55:795-804.10.1016/j.toxicon.2009.11.01319944711Search in Google Scholar

20. Nair DG, Fry BG, Alewood P et al. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. J Biol Chem. 2007;402:93-104;10.1042/BJ20060318178399117044815Search in Google Scholar

21. Fenard D, Lambeau G, Valentin E et al. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. J Clin Invest. 1999;104:611-618.10.1172/JCI691540853910487775Search in Google Scholar

22. Samy RP, Thong TWJ et al. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Micriobiol. 2007;102:650-659.10.1111/j.1365-2672.2006.03161.x17309613Search in Google Scholar

23. Ständker L, Harvey AL, Béress L. et al. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Toxicon 2012;60:623-631.10.1016/j.toxicon.2012.05.01322677803Search in Google Scholar

24. Zaqueo KD, Kayano AM, Stábeli RG et al. Isolation and biochemical characterization of a new thrombin-like serine protease from Bothrops pirajai snake venom. Biomed Res Int. 2014;2014:1-13.10.1155/2014/595186395569524719874Search in Google Scholar

25. Angulo Y, Castro A, Gutiérrez JM et al. Isolation and characterization of four medium-size disintegrins from the venom of Central American viperid snakes of the genera Antropoides, Bothrops, Cerrophidion and Crotalus. Biochemie 2014,107:376-384.10.1016/j.biochi.2014.10.01025457103Search in Google Scholar

26. Hanane-Ziad-Meziane HF, Laraba-Djebari F. Purification, characterization and antibacterial activity of L-amino acid oxidase from Cerastes cereastes. J. Biochem. Mol. Toxic. 2014,28:347-354.10.1002/jbt.2157124817275Search in Google Scholar

27. Nunes ES, Correia MTS et al. Purification of lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol., B: Comp. Biochem. 2011,159:57-63.10.1016/j.cbpb.2011.02.00121334449Search in Google Scholar

28. El Hakim AE, Abouelella AMK et al. Purification and characterization of a cytotoxic neurotoxin-like protein from Naja Haje haje venom that induces mitochondrial apoptosis pathway. Arch. Toxicol. 2011,85:941-952.10.1007/s00204-010-0631-821240479Search in Google Scholar

29. Botes DP, Strydom DJ. A neurotoxin, toxin alpha, from Egyptian cobra (Naja Haje Haje) venom. I. Purification, properties, and complete amino acid sequence. J. Biol. Chem. 1969;244:4147-4157.Search in Google Scholar

30. Wen YL, Wu BJ, Chang LS et al. Antibacterial and membrane-damaging activities of β-bungarotoxin B chain. J Pept Sci. 2012;19:1-8.10.1002/psc.246323136049Search in Google Scholar

31. Chen LW, Kao PH, Fu YS, Hu WP, Chang LS. Bactericidal effect of Naja nigricollis toxin γ is related to its membrane damaging activity. Peptides. 2011;32:1755-1763.10.1016/j.peptides.2011.06.02621762738Search in Google Scholar

32. Samy RP, Al Qahtani et al. Sanke venom proteins: Development into Antimicrobial and Wound Healing Agents. Mini Rev Org Chem. 2014;11:4-14.10.2174/1570193X1101140402100131Search in Google Scholar

33. Al Ahmadi AJ, Mirakabbadi AZ et al. Investigation of the antibacterial effect of venom of the Iranian snake Echis carinatus. Iran J Vet Sci Technol (IJVST). 2010;2:93-100.Search in Google Scholar

34. Jalaei J, Fazeli M, Rajaian H, Shekarforoush SS. In vitro antibacterial effect of wasp (Vespa orientalis) venom. J venom Anim Toxins Incl Trop Dis. 2014;20:1-6.10.1186/1678-9199-20-22404593524955088Search in Google Scholar

35. Zhao Z, Cao J, Li W et al. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob Agents Chemother. 2009;53(8):3472-3477. 10.1128/AAC.01436-08271565219451300Search in Google Scholar

eISSN:
2247-6113
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Clinical Medicine, other