Open Access

A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion


Cite

Bayarri,M., Berger, J., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. and Tu, J. (2007). A framework for validation of computer models, Technometrics 49(2): 138-153.10.1198/004017007000000092Search in Google Scholar

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Bayesian computation and stochastic systems, Statistical Science 10(1): 3-41.10.1214/ss/1177010123Search in Google Scholar

Bieri, M. and Schwab, C. (2009). Sparse high order FEM for elliptic sPDEs, Computer Methods in Applied Mechanics and Engineering 198(13-14): 1149-1170.10.1016/j.cma.2008.08.019Search in Google Scholar

Bortz, A., Kalos, M. and Lebowitz, J. (1975). A new algorithm for Monte Carlo simulation in Ising spin systems, Journal of Computational Physics 17(1): 10-18.10.1016/0021-9991(75)90060-1Search in Google Scholar

Cai, B., Meyer, R. and Perron, F. (2008). Metropolis-Hastings algorithms with adaptive proposals, Statistics and Computing 18(4): 421-433.10.1007/s11222-008-9051-5Search in Google Scholar

Cameron, R. and Martin, W. (1947). The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, The Annals of Mathematics 48(2): 385-392.10.2307/1969178Search in Google Scholar

Cheng, M., Hou, T. and Zhang, Z. (2013a). A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations. I: Derivation and algorithms, Journal of Computational Physics 242(1): 843-868.10.1016/j.jcp.2013.02.033Search in Google Scholar

Cheng, M., Hou, T. and Zhang, Z. (2013b). A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations. II: Adaptivity and generalizations, Journal of Computational Physics 242(1): 753-776.10.1016/j.jcp.2013.02.020Search in Google Scholar

Cotter, S., Dashti, M., Robinson, J. and Stuart, A. (2012). Variational data assimilation using targeted random walks, International Journal for Numerical Methods in Fluids 68(4).10.1002/fld.2510Search in Google Scholar

Cotter, S., Roberts, G., Stuart, A. and White, D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster, Statistical Science 28(3): 424-446.10.1214/13-STS421Search in Google Scholar

Dumbser, M. and Munz, C.-D. (2007). On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes, International Journal of Applied Mathematics and Computer Science 17(3): 297-310, DOI: 10.2478/v10006-007-0024-1.10.2478/v10006-007-0024-1Search in Google Scholar

Gamerman, D. and Lopes, H. (2006). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman and Hall/CRC, Boca Raton, FL.10.1201/9781482296426Search in Google Scholar

Ghanem, R. and Red-Horse, J. (1999). Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach, Physica D 133(1-4): 137-144.10.1016/S0167-2789(99)00102-5Search in Google Scholar

Ghanem, R. and Spanos, P. (1991). Spectral stochastic finite-element formulation for reliability analysis, Journal of Engineering Mechanics 117(10): 2351-2372.10.1061/(ASCE)0733-9399(1991)117:10(2351)Search in Google Scholar

Ghanem, R. and Spanos, P. (2003). Stochastic Finite Elements: A Spectral Approach, Dover Publications, New York, NY.Search in Google Scholar

Gilks, W., Roberts, G. and Sahu, S. (1998). Adaptive Markov chain Monte Carlo through regeneration, Journal of American Statistical Association 93(443): 1045-1054.10.1080/01621459.1998.10473766Search in Google Scholar

Goldstein, M. and Rougier, J. (2005). Probabilistic formulations for transferring inferences from mathematical models to physical systems, SIAM Journal of Scientific Computing 26(2): 467-487.10.1137/S106482750342670XSearch in Google Scholar

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57(1): 97-109.10.1093/biomet/57.1.97Search in Google Scholar

Higdon, D., Kennedy, M., Cavendish, J., Cafeo, J. and Ryne, R. (2005). Combining field data and computer simulations for calibration and prediction, SIAM Journal of Scientific Computing 26(2): 448-446.10.1137/S1064827503426693Search in Google Scholar

Hoang, V., Schwab, C. and Stuart, A. (2013). Complexity analysis of accelerated MCMC methods for Bayesian inversion, Inverse Problems 29(8): 08501010.1088/0266-5611/29/8/085010Search in Google Scholar

Janiszowski, K. and Wnuk, P. (2016). Identification of parameteric models with a priori knowledge of process properties, International Journal of Applied Mathematics and Computer Science 26(4): 767-776, DOI: 10.1515/amcs-2016-0054.10.1515/amcs-2016-0054Search in Google Scholar

Kamiński, M. (2015). Symbolic computing in probabilistic and stochastic analysis, International Journal of Applied Mathematics and Computer Science 25(4): 961-973, DOI: 10.1515/amcs-2015-0069.10.1515/amcs-2015-0069Search in Google Scholar

Karczewska, A., Pozmej, P., Szczeci´nski, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555-567, DOI: 10.1515/amcs-2016-0039.10.1515/amcs-2016-0039Search in Google Scholar

Kelly, D. and Smith, C. (2009). Bayesian inference in probabilistic risk assessment-the current state of the art, Reliability Engineering and System Safety 94(2): 628-643.10.1016/j.ress.2008.07.002Search in Google Scholar

Kennedy, M. and O’Hagan, A. (2001). Bayesian calibration of computer models, Journal of the Royal Statistical Society B: Statistical Methodology 63(3): 425-464.10.1111/1467-9868.00294Search in Google Scholar

Knio, O. and Maitre, O. (2006). Uncertainty propagation in CFD using polynomial chaos decomposition, Fluid Dynamics Research 38(9): 616-640.10.1016/j.fluiddyn.2005.12.003Search in Google Scholar

Lucor, D., Xiu, D., Su, C. and Karniadakis, G. (2003). Predictability and uncertainty in CFD, International Journal for Numerical Methods in Fluids 43(5): 483-505.Search in Google Scholar

Marzouk, Y. and Najm, H. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics 224(2): 560-586.10.1016/j.jcp.2006.10.010Search in Google Scholar

Marzouk, Y. and Najm, H. (2009). Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems, Journal of Computational Physics 228(6): 18621902.10.1016/j.jcp.2008.11.024Search in Google Scholar

Mathelin, L., Hussaini, M., Zang, T. and Bataille, F. (2004). Uncertainty propagation for a turbulent, compressible nozzle flow using stochastic methods, AIAA Journal 42(8): 1669-1676.10.2514/1.5674Search in Google Scholar

Mehta, U. (1991). Some aspects of uncertainty in computational fluid dynamics results, Journal of Fluid Engineering 113(4): 538-543.10.1115/1.2926512Search in Google Scholar

Mehta, U. (1996). Guide to credible computer simulations of fluid flows, Journal of Propulsion and Power 12(5): 940-948.10.2514/3.24126Search in Google Scholar

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equation of state calculations by fast computing machines, The Journal of Chemical Physics 21(6): 1087-1092.10.1063/1.1699114Search in Google Scholar

Narayanan, V. and Zabaras, N. (2004). Stochastic inverse heat conduction using spectral approach, International Journal for Numerical Methods in Engineering 60(9): 1569-1593.10.1002/nme.1015Search in Google Scholar

Oberkampf, W., DeLand, S., Rutherford, B., Diegert, K. and Alvin, K. (2002). Error and uncertainty in modeling and simulation, Reliability Engineering and System Safety 75(3): 335-357.10.1016/S0951-8320(01)00120-XSearch in Google Scholar

O’Hagan, A. (2006). Bayesian analysis of computer code outputs: A tutorial, Reliability Engineering and System Safety 91(10-11): 1290-1300.10.1016/j.ress.2005.11.025Search in Google Scholar

Oreskes, N., Shrader-Frechett, K. and Belitz, K. (1994). Verification, validation and confirmation of numerical models in earth sciences, Science 263(5147): 641-647.10.1126/science.263.5147.64117747657Search in Google Scholar

Paulo, R. (2005). Default priors for Gaussian processes, The Annals of Statistics 33(2): 556-582.10.1214/009053604000001264Search in Google Scholar

Poette, G., Despres, B. and Lucor, D. (2009). Uncertainty quantification for systems of conservation laws, Journal of Computational Physics 228(7): 2443-2467.10.1016/j.jcp.2008.12.018Search in Google Scholar

Sapsis, T. and Lermusiaux, P. (2009). Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D 238: 2347-2360.10.1016/j.physd.2009.09.017Search in Google Scholar

Sapsis, T. and Lermusiaux, P. (2012). Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D 241(1): 60-76.10.1016/j.physd.2011.10.001Search in Google Scholar

Schwab, C. and Gittelson, C. (2011). Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numerica 20: 291-467.10.1017/S0962492911000055Search in Google Scholar

Schwab, C. and Stuart, A. (2012). Sparse deterministic approximation of Bayesian inverse problems, Inverse Problems 28(4): 1-32.10.1088/0266-5611/28/4/045003Search in Google Scholar

Tagade, P. and Choi, H.-L. (2012). An efficient Bayesian calibration approach using dynamically biorthogonal field equations, ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, IL, USA, pp. 873-882.Search in Google Scholar

Tagade, P. and Choi, H.-L. (2013). A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models, Inverse Problems in Science and Engineering 22(4): 602-624.10.1080/17415977.2013.823411Search in Google Scholar

Tagade, P. and Sudhakar, K. (2011). Inferencing component maps of gas turbine engine using Bayesian framework, Journal of Propulsion and Power 27(1): 94-104.10.2514/1.47329Search in Google Scholar

Tagade, P., Sudhakar, K. and Sane, S. (2009). Bayesian framework for calibration of gas turbine simulator, Journal of Propulsion and Power 25(4): 987-992.10.2514/1.38215Search in Google Scholar

Trucano, T., Swiler, L., Igusa, T., Oberkampf, W. and M., P. (2006). Calibration, validation, and sensitivity analysis: What’s what, Reliability Engineering and System Safety 91(10-11): 1331-1357.10.1016/j.ress.2005.11.031Search in Google Scholar

Venturi, D. (2011). A fully symmetric nonlinear biorthogonal decomposition theory for random fields, Physica D 240(4-5): 415-425.10.1016/j.physd.2010.10.005Search in Google Scholar

Wiener, N. (1938). The homogeneous chaos, American Journal of Mathematics 60(4): 897-936.10.2307/2371268Search in Google Scholar

Wiener, N. (1958). Nonlinear Problems in Random Theory, John Wiley&Sons, New York, NY.Search in Google Scholar

Xiu, D. and Karniadakis, E. (2002). The Weiner-Askey polynomial chaos for stochastic differential equations, SIAM Journal of Scientific Computing 24(2): 619-644.10.1137/S1064827501387826Search in Google Scholar

Xiu, D. and Karniadakis, G. (2003). Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics 187(1): 137-167.10.1016/S0021-9991(03)00092-5Search in Google Scholar

Zaidi, A., Ould Bouamama, B. and Tagina, M. (2012). Bayesian reliability models of Weibull systems: State of the art, International Journal of Applied Mathematics and Computer Science 22(3): 585-600, DOI: 10.2478/v10006-012-0045-2.10.2478/v10006-012-0045-2Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics