Cite

Bartýs, M. (2013). Generalized reasoning about faults based on the diagnostic matrix, International Journal of Applied Mathematics and Computer Science 23(2): 407-417, DOI: 10.2478/amcs-2013-0031.10.2478/amcs-2013-0031Search in Google Scholar

Basseville, M. (1997). Information criteria for residual generation and fault detection and isolation, Automatica 33(5): 783-803, DOI: 10.1016/S0005-1098(97)00004-6.10.1016/S0005-1098(97)00004-6Search in Google Scholar

Basseville, M. (1999). On fault detectability and isolability, 1999 European Control Conference (ECC), Karlsruhe, Germany, pp. 385-390.Search in Google Scholar

Chen, J. and Patton, R.J. (1999). Robust Model-based Fault Diagnosis for Dynamic Systems, Springer Science & Business Media, New York, NY.10.1007/978-1-4615-5149-2Search in Google Scholar

Cordier, M.-O., Dague, P., Lévy, F., Montmain, J., Staroswiecki, M. and Travé-Massuyès, L. (2004). Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(5): 2163-2177, DOI: 10.1109/ TSMCB.2004.835010.Search in Google Scholar

De Kleer, J., Mackworth, A.K. and Reiter, R. (1992). Characterizing diagnoses and systems, Artificial Intelligence 56(2): 197-222, DOI: 10.1016/ 0004-3702(92)90027-U.Search in Google Scholar

Ding, S.X. (2008). Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer Science & Business Media, London.Search in Google Scholar

Düştegör, D., Frisk, E., Cocquempot, V., Krysander, M. and Staroswiecki, M. (2006). Structural analysis of fault isolability in the damadics benchmark, Control Engineering Practice 14(6): 597-608, DOI: 10.1016/ j.conengprac.2005.04.008.Search in Google Scholar

Eriksson, D., Frisk, E. and Krysander, M. (2013). A method for quantitative fault diagnosability analysis of stochastic linear descriptor models, Automatica 49(6): 1591-1600, DOI: 10.1016/j.automatica.2013.02.045.10.1016/j.automatica.2013.02.045Search in Google Scholar

Frisk, E., Bregon, A., Åslund, J., Krysander, M., Pulido, B. and Biswas, G. (2012). Diagnosability analysis considering causal interpretations for differential constraints, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 42(5): 1216-1229, DOI: 10.1109/TSMCA.2012.2189877.10.1109/TSMCA.2012.2189877Search in Google Scholar

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, CRC Press, New York, NY.Search in Google Scholar

Górny, B. and Ligęza, A. (2002). Model-based diagnosis of dynamic systems: Systematic conflict generation, in L. Magnani et al. (Eds.), Logical and Computational Aspects of Model-Based Reasoning, Springer, Dordrecht, pp. 273-291.10.1007/978-94-010-0550-0_13Search in Google Scholar

He, X.,Wang, Z., Liu, Y. and Zhou, D. H. (2013). Least-squares fault detection and diagnosis for networked sensing systems using a direct state estimation approach, IEEE Transactions on Industrial Informatics 9(3): 1670-1679, DOI: 10.1109/TII.2013.2251891.10.1109/TII.2013.2251891Search in Google Scholar

Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer Science & Business Media, Berlin/Heidelberg.10.1007/3-540-30368-5Search in Google Scholar

Koivo, H. (1994). Artificial neural networks in fault diagnosis and control, Control Engineering Practice 2(1): 89-101. DOI: 10.1016/0967-0661(94)90577-0.10.1016/0967-0661(94)90577-0Search in Google Scholar

Korbicz, J., Kóscielny, J.M., Kowalczuk, Z. and Cholewa, W. (Eds.) (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer Science & Business Media, Berlin/Heidelberg.10.1007/978-3-642-18615-8Search in Google Scholar

Kościelny, J.M. (1999). Application of fuzzy logic for fault isolation in a three-tank system, 14th IFAC World Congress, Beijing, China, pp. 73-78.Search in Google Scholar

Kościelny, J.M., Bartýs, M., Rzepiejewski, P. and Sa Da Costa, J. (2006). Actuator fault distinguishability study for the damadics benchmark problem, Control Engineering Practice 14(6): 645-652, DOI: 10.1016/ j.conengprac.2005.06.014.Search in Google Scholar

Kościelny, J.M. and Łab˛eda-Grudziak, Z.M. (2013). Double fault distinguishability in linear systems, International Journal of Applied Mathematics and Computer Science 23(2): 395-406, DOI: 10.2478/amcs-2013-0030.10.2478/amcs-2013-0030Search in Google Scholar

Kościelny, J.M., Syfert, M. and Tabor, Ł. (2013). Application of knowledge about residual dynamics for fault isolation and identification, 2013 Conference on Control and Fault- Tolerant Systems (SysTol), Nice, France, pp. 275-280.Search in Google Scholar

Krysander, M. and Frisk, E. (2008). Sensor placement for fault diagnosis, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 38(6): 1398-1410, DOI: 10.1109/TSMCA.2008.2003968.10.1109/TSMCA.2008.2003968Search in Google Scholar

Ossmann, D. and Varga, A. (2015). Detection and identification of loss of efficiency faults of flight actuators, International Journal of Applied Mathematics and Computer Science 25(1): 53-63, DOI: 10.1515/amcs-2015-0004.10.1515/amcs-2015-0004Search in Google Scholar

Patton, R.J., Frank, P.M. and Clark, R.N. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer Science & Business Media, London.10.1007/978-1-4471-3644-6Search in Google Scholar

Patton, R.J., Lopez-Toribio, C.J. and Uppal, F.J. (1999). Artificial intelligence approaches to fault diagnosis for dynamic systems, International Journal of Applied Mathematics and Computer Science 9(3): 471-518.Search in Google Scholar

Pulido, B. and González, C.A. (2004). Possible conflicts: A compilation technique for consistency-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics 34(5): 2192-2206, DOI: 10.1109/ TSMCB.2004.835007.Search in Google Scholar

Reiter, R. (1987). A theory of diagnosis from first principles, Artificial Intelligence 32(1): 57-95, DOI: 10.1016/0004-3702(87)90062-2.10.1016/0004-3702(87)90062-2Search in Google Scholar

Syfert, M. and Koscielny, J.M. (2009). Diagnostic reasoning based on symptom forming sequence, IFAC Proceedings Volumes 42(8): 89-94, DOI: 10.3182/20090630-4-ES-2003.00015.10.3182/20090630-4-ES-2003.00015Search in Google Scholar

Sztyber, A., Ostasz, A. and Kóscielny, J.M. (2015). Graph of a process-a new tool for finding model structures in a model-based diagnosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(7): 1004-1017, DOI: 10.1109/TSMC.2014.2384000.10.1109/TSMC.2014.2384000Search in Google Scholar

Travé-Massuyès, L. (2014). Bridging control and artificial intelligence theories for diagnosis: A survey, Engineering Applications of Artificial Intelligence 27: 1-16, DOI: 10.1016/j.engappai.2013.09.018.10.1016/j.engappai.2013.09.018Search in Google Scholar

Travé-Massuyes, L., Escobet, T. and Olive, X. (2006). Diagnosability analysis based on component-supported analytical redundancy relations, IEEE Transactions on Systems, Man and Cybernetics A: Systems and Humans 36(6): 1146-1160, DOI: 10.1109/TSMCA.2006.878984.10.1109/TSMCA.2006.878984Search in Google Scholar

Yin, S. and Huang, Z. (2015). Performance monitoring for vehicle suspension system via fuzzy positivistic c-means clustering based on accelerometer measurements, IEEE/ASME Transactions on Mechatronics 20(5): 2613-2620, DOI: 10.1109/ TMECH.2014.2358674.Search in Google Scholar

Yin, S., Wang, G. and Gao, H. (2016). Data-driven process monitoring based on modified orthogonal projections to latent structures, IEEE Transactions on Control Systems Technology 24(4): 1480-1487, DOI: 10.1109/TCST.2015.2481318.10.1109/TCST.2015.2481318Search in Google Scholar

Yin, S., Xie, X., Lam, J., Cheung, K.C. and Gao, H. (2015). An improved incremental learning approach for KPI prognosis of dynamic fuel cell system, IEEE Transactions on Cybernetics PP(99): 1-10, DOI: 10.1109/TCYB.2015.2498194.10.1109/TCYB.2015.249819426600561Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics