Cite

Alifanov, O.M. (1994). Inverse Heat Transfer Problems, Springer-Verlag, Berlin.10.1007/978-3-642-76436-3Search in Google Scholar

Alifanov, O.M., Artyukhin, E.A. and Rumyantsev, S.V. (1995). Extreme Methods for Solving Ill Posed Problems with Applications to Inverse Heat Transfer Problems, Begell House, New York, NY.Search in Google Scholar

Autrique, L., Chaussavoine, C., Leyris, J. and Ferriere, A. (2000). Optimal sensor strategy for parametric identification of a thermal system, Proceedings of IFACSYSID 2000, Santa Barbara, CA, USA.10.1016/S1474-6670(17)39879-8Search in Google Scholar

Autrique, L., Leyris, J. and Ramdani, N. (2002). Optimal sensor location: An experimental process for the identification of moving heat sources, Proceedings of the 15th World Congress IFAC, Barcelona, Spain.10.3182/20020721-6-ES-1901.01584Search in Google Scholar

Beck, J. and Arnold, K. (1977). Parameter Estimation in Engineering and Science, John Wiley and Sons, New York, NY.Search in Google Scholar

Chen, M., Berkowitz-Mattuck, J.B. and Glaser, P.E. (1963). The use of a kaleidoscope to obtain uniform flux over a large area in a solar or arc imaging furnace, Applied Optics2(3): 265–271.10.1364/AO.2.000265Search in Google Scholar

Daouas, N. and Radhouani, M. (2004). A new approach of the Kalman filter using future temperature measurements for nonlinear inverse heat conduction problem, Numerical Heat Transfer45(6): 565–585.10.1080/10407790490430598Search in Google Scholar

Daouas, N. and Radhouani, M. (2007). Experimental validation of an extended Kalman smoothing technique for solving nonlinear inverse heat conduction problems, Inverse Problems in Science and Engineering15(7): 765–782.10.1080/17415970701200526Search in Google Scholar

Egger, H., Heng, Y., Marquardt, W. and Mhamdi, A. (2009). Efficient solution of a three-dimensional inverse heat conduction problem in pool boiling, Inverse Problems25(9), Article ID: 095006.10.1088/0266-5611/25/9/095006Search in Google Scholar

Girault, M., Videcoq, E. and Petit, D. (2010). Estimation of time-varying heat sources through inversion of a low order model built with the modal identification method from in-situ temperature measurements, Journal of Heat and Mass Transfer53: 206–219.10.1016/j.ijheatmasstransfer.2009.09.040Search in Google Scholar

Hager, W. and Zhang, H. (2006). A survey of nonlinear conjugate gradient method, Pacific Journal of Optimization2(1): 35–58.Search in Google Scholar

Hasanov, A. and Pektas, B. (2013). Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method, Computers and Mathematics with Applications65(1): 42–57.10.1016/j.camwa.2012.10.009Search in Google Scholar

Huang, C. and Chen, W. (1999). A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method, International Journal of Heat and Mass Transfer43(17): 3171–3181.10.1016/S0017-9310(99)00330-0Search in Google Scholar

Isakov, V. (1998). Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, NY.10.1007/978-1-4899-0030-2Search in Google Scholar

Jarny, Y., Ozisik, M. and Bardon, J. (1991). A general optimization method using adjoint equation for solving multidimensional inverse heat conduction, International Journal of Heat and Mass Transfer34(11): 2911–2919.10.1016/0017-9310(91)90251-9Search in Google Scholar

Khachfe, R. and Jarny, Y. (2000). Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques, Numerical Heat Transfer B37(1): 45–67.10.1080/104077900275549Search in Google Scholar

Khachfe, R. and Jarny, Y. (2001). Determination of heat sources and heat transfer coefficient for two-dimensional heat flow numerical and experimental study, International Journal of Heat and Mass Transfer44(7): 1309–1322.10.1016/S0017-9310(00)00186-1Search in Google Scholar

Kolodziej, J., Mierzwiczak, M. and Ciakowski, M. (2010). Application of the method of fundamental solutions and radial basis functions for inverse heat source problem in case of steady-state, International Communications in Heat and Mass Transfer37(2): 121–124.10.1016/j.icheatmasstransfer.2009.09.015Search in Google Scholar

Lefèvre, F. and Le Niliot, C.L. (2002). Multiple transient point heat sources identification in heat diffusion: Application to experimental 2D problems, Journal of Heat and Mass Transfer45(9): 1951–1964.10.1016/S0017-9310(01)00299-XSearch in Google Scholar

Le Niliot, C. and Lefèvre, F. (2001). A method for multiple steady line heat sources identification in diffusive system: Application to an experimental 2D problem, Journal of Heat and Mass Transfer44(7): 1425–1438.10.1016/S0017-9310(00)00184-8Search in Google Scholar

Le Niliot, C. and Lefèvre, F. (2004). A parameter estimation approach to solve the inverse problem of point heat sources identification, International Journal of Heat and Mass Transfer47(4): 827–841.10.1016/j.ijheatmasstransfer.2003.08.011Search in Google Scholar

Lormel, C., Autrique, L. and Claudet, B. (2004). Mathematical modeling of skin behavior during a laser radiation exposure, Proceedings of the 2nd European Survivability Workshop, Noordwijk, The Netherlands.Search in Google Scholar

Mechhoud, S., Witrant, E., Dugard, L. and Moreau, D. (2013). Combined distributed parameters and source estimation in tokamak plasma heat transport, Proceedings of the European Control Conference, Zurich, Switzerland.10.23919/ECC.2013.6669180Search in Google Scholar

Mierzwiczak, M. and Kolodziej, J. (2010). Application of the method of fundamental solutions and radial basis functions for inverse transient heat source problem, Computer Physics Communications181(12): 2035–2043.10.1016/j.cpc.2010.08.020Search in Google Scholar

Mierzwiczak, M. and Kolodziej, J. (2011). The determination of heat sources in two dimensional inverse steady heat problems by means of the method of fundamental solutions, Inverse Problems in Science and Engineering19: 777–792.10.1080/17415977.2010.539685Search in Google Scholar

Mierzwiczak, M. and Kolodziej, J. (2012). Application of the method of fundamental solutions with the Laplace transformation for the inverse transient heat source problem, Journal of Theoretical and Applied Mechanics50(4): 1011–1023.Search in Google Scholar

Mohammadiun, M., Rahimi, A. and Khazaee, I. (2011). Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method, International Journal of Thermal Sciences50(12): 2443–2450.10.1016/j.ijthermalsci.2011.07.003Search in Google Scholar

Morozov, V. (1994). Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, NY.Search in Google Scholar

Museux, N., Perez, L., Autrique, L. and Agay, D. (2012). Skin burns after laser exposure: Histological analysis and predictive simulation, Burns38(5): 658–667.10.1016/j.burns.2011.12.006Search in Google Scholar

Park, H., Chung, O. and Lee, J. (1999). On the solution of inverse heat transfer problem using the Karhunen–Love–Galerkin method, International Journal of Heat and Mass Transfer42: 127–142.10.1016/S0017-9310(98)00136-7Search in Google Scholar

Perez, L., Gillet, M. and Autrique, L. (2007). Parametric identification of a multi-layered intumescent system, Proceedings of the 5th International Conference: Inverse Problems (Identification, Design and Control), Moscow, Russia.Search in Google Scholar

Perez, L. and Vergnaud, A. (2016). Observation strategies for mobile heating source tracking, High Temperatures, High Pressures45(1): 57–76.Search in Google Scholar

Powell, M. (1977). Restart procedures for the conjugate gradient method, Mathematical Programming12(1): 241–254.10.1007/BF01593790Search in Google Scholar

Prudhomme, M. and Nguyen, T.H. (1998). On the iterative regularization of inverse heat conduction problems by conjugate gradient method, International Communications in Heat and Mass Transfer25(7): 999–1008.10.1016/S0735-1933(98)00091-8Search in Google Scholar

Rakotoniaina, J., Breitenstein, O. and Langenkamp, M. (2002). Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography, Materials Science and Engineering B: Solid-State Materials for Advanced Technology91: 481–485.10.1016/S0921-5107(01)01011-XSearch in Google Scholar

Renault, N., André, S., Maillet, D. and Cunat, D. (2008). A two-step regularized inverse solution for 2-D heat source reconstruction, Journal of Thermal Sciences47(7): 827–841.10.1016/j.ijthermalsci.2007.07.017Search in Google Scholar

Renault, N., André, S., Maillet, D. and Cunat, D. (2010). A spectral method for the estimation of a thermomechanical heat source from infrared temperature measurements, Journal of Thermal Sciences49(8): 1394–1406.10.1016/j.ijthermalsci.2010.03.001Search in Google Scholar

Rouquette, S., Autrique, L., Chaussavoine, C. and Thomas, L. (2007a). Identification of influence factors in a thermal model of a plasma-assisted chemical vapor deposition process, Inverse Problems in Science and Engineering15(5): 489–515.10.1080/17415970600838764Search in Google Scholar

Rouquette, S., Guo, J. and Masson, P.L. (2007b). Estimation of the parameters of a Gaussian heat source by the Levenberg–Marquardt method: Application to the electron beam welding, International Journal of Thermal Sciences46(2): 128–138.10.1016/j.ijthermalsci.2006.04.015Search in Google Scholar

Silva Neto, A. and Ozisik, M. (1993). Simultaneous estimation of location and timewise-varying strength of a plane heat source, Numerical Heat Transfer A24(4): 467–477.10.1080/10407789308902635Search in Google Scholar

Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA.10.1137/1.9780898717921Search in Google Scholar

Weinstock, R.P. (1952). Calculus of Variations, McGraw, New York, NY.Search in Google Scholar

Yi, Z. and Murio, D. (2002). Source term identification in 1D IHCP, Journal of Computers and Mathematics with Applications47(10/11): 1921–1933.10.1016/j.camwa.2002.11.025Search in Google Scholar

Zhou, J., Zhang, Y., Chen, J. and Feng, Z. (2010). Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method, International Journal of Heat and Mass Transfer53: 2643–2654.10.1016/j.ijheatmasstransfer.2010.02.048Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics