Cite

Adjrad, M. and Belouchrani, A. (2007). Estimation of multicomponent polynomial-phase signals impinging on a multisensor array using state-space modeling, IEEE Transactions on Signal Processing55(1): 32–45.10.1109/TSP.2006.882055Search in Google Scholar

Angelov, P.P., Filev, D.P. (2004). Flexible models with evolving structure, International Journal of Intelligent Systems19(4): 327–340.10.1002/int.10166Search in Google Scholar

Babuska, R., Verbruggen, H. (2003). Flexible neuro-fuzzy methods for nonlinear system identification, Annual Reviews in Control27(1): 73–85.10.1016/S1367-5788(03)00009-9Search in Google Scholar

Bagarinao, E., Matsuo, K., Nakai, T. and Sato, S. (2003). Estimation of general linear model coefficients for real-time application, NeuroImage19(2): 422–429.10.1016/S1053-8119(03)00081-8Search in Google Scholar

Banerjee, A., Arkun, Y., Ogunnaike, B. and Pearson, R. (1997). Estimation of nonlinear systems using linear multiple models, AIChE Journal43(5): 1204–1226.10.1002/aic.690430511Search in Google Scholar

Bohlin, T.P. (2006). Practical Grey-Box Process Identification: Theory and Applications, Springer, London.Search in Google Scholar

Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science17(2): 233–248, DOI: 10.2478/v10006-007-0021-4.10.2478/v10006-007-0021-4Search in Google Scholar

Casillas, J., Cordón, O., Herrera, F. and Magdalena, L. (2003). Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: An overview, in J. Casillas et al. (Eds.), Interpretability Issues in Fuzzy Modeling, Springer, Berlin/Heidelberg, pp. 3–22.10.1007/978-3-540-37057-4_1Search in Google Scholar

Caughey, T.K. (1963). Equivalent linearization techniques, Journal of the Acoustical Society of America35(11): 1706–1711.10.1121/1.1918794Search in Google Scholar

Cordón, O. (2011). A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems, International Journal of Approximate Reasoning52(6): 894–913.10.1016/j.ijar.2011.03.004Search in Google Scholar

Cordón, O., Herrera, F., Hoffmann, F. and Magdalena, L. (2001). Genetic Fuzzy Systems, World Scientific Publishing Company, Singapore.10.1142/4177Search in Google Scholar

Cpałka, K. (2009a). A new method for design and reduction of neuro-fuzzy classification systems, IEEE Transactions on Neural Networks20(4): 701–714.10.1109/TNN.2009.201242519273042Search in Google Scholar

Cpałka, K. (2009b). On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification, Nonlinear Analysis A: Theory, Methods and Applications71(12): 1659–1672.10.1016/j.na.2009.02.028Search in Google Scholar

Cpałka, K., Łapa, K., Przybył, A. and Zalasiński, M. (2014). A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects, Neuro-computing135: 203–217.10.1016/j.neucom.2013.12.031Search in Google Scholar

Cpałka, K., Rebrova, O., Nowicki, R. and Rutkowski, L. (2013). On design of flexible neuro-fuzzy systems for nonlinear modelling, International Journal of General Systems42(6): 706–720.10.1080/03081079.2013.798912Search in Google Scholar

Czekalski, P. (2006). Evolution-fuzzy rule based system with parameterized consequences, International Journal of Applied Mathematics and Computer Science16(3): 373–385.Search in Google Scholar

DeHaan, D. and Guay, M. (2006). A new real-time perspective on non-linear model predictive control, Journal of Process Control16(6): 615–624.10.1016/j.jprocont.2005.10.002Search in Google Scholar

Di Nuovo, A. and Ascia, G. (2013). A fuzzy system index to preserve interpretability in deep tuning of fuzzy rule based classifiers, Journal of Intelligent and Fuzzy Systems25(2): 493–504.10.3233/IFS-120660Search in Google Scholar

Eiben, A.E. and Smith, J. (2008). Introduction to Evolutionary Computing, Springer, Berlin/Heidelberg.Search in Google Scholar

Fei, X., Lu, C.-C. and Liu, K. (2011). A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction, Transportation Research C: Emerging Technologies19(6): 1306–1318.10.1016/j.trc.2010.10.005Search in Google Scholar

Fogel, D.B. (2006). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, Vol. 1, John Wiley & Sons, Hoboken, NJ.Search in Google Scholar

Fogel, D.B. and Atmar, J.W. (1990). Comparing genetic operators with Gaussian mutations in simulated evolutionary processes using linear systems, Biological Cybernetics63(2): 111–114.10.1007/BF00203032Search in Google Scholar

Forst, W. and Hoffmann, D. (2010). Optimization Theory and Practice, Springer, New York, NY.10.1007/978-0-387-78977-4Search in Google Scholar

Gabryel, M. and Rutkowski, L. (2006). Evolutionary learning of Mamdani-type neuro-fuzzy systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 4029, Springer, Berlin/Heidelberg, pp. 354–359.10.1007/11785231_38Search in Google Scholar

Gacto, M., Alcala, R. and Herrera, F. (2011). Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures, Information Sciences181(20): 4340–4360.10.1016/j.ins.2011.02.021Search in Google Scholar

Grabowski, P. and Callier, F.M. (2001). Circle criterion and boundary control systems in factor form: Input-output approach, Applied Mathematics and Computer Science11(6): 1387–1403.Search in Google Scholar

Háber, R. and Keviczky, L. (1999). Nonlinear System Identification—Input-Output Modeling Approach, Vol. 1: Nonlinear System Parameter Identification, Springer Netherlands, Dordrecht.10.1007/978-94-011-4481-0Search in Google Scholar

Homaifar, A. and McCormick, E. (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Transactions on Fuzzy Systems3(2): 129–139.10.1109/91.388168Search in Google Scholar

Horzyk, A. and Tadeusiewicz, R. (2004). Self-optimizing neural networks, Advances in Neural Networks, Springer, Berlin/Heidelberg, pp. 150–155.Search in Google Scholar

Huijberts, H., Nijmeijer, H. and Willems, R. (2000). System identification in communication with chaotic systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications47(6): 800–808.10.1109/81.852932Search in Google Scholar

Ikonen, E. and Najim, K. (2001). Advanced Process Identification and Control, Vol. 9, CRC Press, New York, NY.10.1201/9781482294699Search in Google Scholar

Ishibashi, R. and Lucio Nascimento, Jr., C. (2013). GFRBS-PHM: A genetic fuzzy rule-based system for PHM with improved interpretability, IEEE Conference on Prognostics and Health Management, 2013, Gaithersburg, MD, USA, pp. 1–7.Search in Google Scholar

Ishibuchi, H. and Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining, Fuzzy Sets and Systems141(1): 59–88.10.1016/S0165-0114(03)00114-3Search in Google Scholar

Jang, I.-S. R. and Sun, C.-T. (1995). Neuro-fuzzy modeling and control, Proceedings of the IEEE83(3): 378–406.10.1109/5.364486Search in Google Scholar

Johansen, T.A., Shorten, R. and Murray-Smith, R. (2000). On the interpretation and identification of dynamic Takagi–Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems8(3): 297–313.10.1109/91.855918Search in Google Scholar

Johansson, U., Sönströd, C., Norinder, U. and Boström, H. (2011). Trade-off between accuracy and interpretability for predictive in silico modeling, Future Medicinal Chemistry3(6): 647–663.10.4155/fmc.11.2321554073Search in Google Scholar

Jordan, A. (2006). Linearization of non-linear state equation, Bulletin of the Polish Academy of Sciences: Technical Sciences54(1): 63–73.Search in Google Scholar

Juang, C.-F. and Chen, C.-Y. (2013). Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability, IEEE Transactions on Cybernetics43(6): 1781–1795.10.1109/TSMCB.2012.223025324273147Search in Google Scholar

Kim, M.-S., Kim, C.-H. and Lee, J.-J. (2006). Evolving compact and interpretable Takagi–Sugeno fuzzy models with a new encoding scheme, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(5): 1006–1023.10.1109/TSMCB.2006.872265Search in Google Scholar

Kluska, J. (2009). Analytical Methods in Fuzzy Modeling and Control, Springer, Berlin/Heidelberg.10.1007/978-3-540-89927-3Search in Google Scholar

Kluska, J. (2015). Selected applications of P1-TS fuzzy rule-based systems, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 9119, Springer, Berlin/Heidelberg, pp. 195–206.10.1007/978-3-319-19324-3_18Search in Google Scholar

Kristensen, N.R., Madsen, H. and Jørgensen, S.B. (2004). A method for systematic improvement of stochastic grey-box models, Computers & Chemical Engineering28(8): 1431–1449.10.1016/j.compchemeng.2003.10.003Search in Google Scholar

Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook of Monte Carlo Methods, Vol. 706, John Wiley & Sons, Hoboken, NJ.10.1002/9781118014967Search in Google Scholar

Li, C. and Chiang, T.-W. (2012). Intelligent financial time series forecasting: A complex neuro-fuzzy approach with multi-swarm intelligence, International Journal of Applied Mathematics and Computer Science22(4): 787–800, DOI: 10.2478/v10006-012-0058-x.10.2478/v10006-012-0058-xSearch in Google Scholar

Ljung, L. (2010). Approaches to identification of nonlinear systems, 9th Chinese Control Conference, Beijing, China, pp. 1–5.Search in Google Scholar

Łęski, J. (2003). A fuzzy if-then rule-based nonlinear classifier, International Journal of Applied Mathematics and Computer Science13(2): 215–223.10.1016/S0165-0114(02)00372-XSearch in Google Scholar

Lughofer, E. (2013). On-line assurance of interpretability criteria in evolving fuzzy systems—achievements, new concepts and open issues, Information Sciences251: 22–46.10.1016/j.ins.2013.07.002Search in Google Scholar

Malchiodi, D. and Pedrycz, W. (2013). Learning membership functions for fuzzy sets through modified support vector clustering, in F. Masulli et al. (Eds.), Fuzzy Logic and Applications, Springer, Cham, pp. 52–59.10.1007/978-3-319-03200-9_6Search in Google Scholar

Medasani, S., Kim, J. and Krishnapuram, R. (1998). An overview of membership function generation techniques for pattern recognition, International Journal of Approximate Reasoning19(3): 391–417.10.1016/S0888-613X(98)10017-8Search in Google Scholar

Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information, The Psychological Review63: 81–97.10.1037/h0043158Search in Google Scholar

Mrugalski, M. (2014). Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis, Studies in Computational Intelligence, Vol. 510, Springer-Verlag, Berlin/Heidelberg.Search in Google Scholar

Murray-Smith, R. and Johansen, T. (1997). Multiple Model Approaches to Nonlinear Modelling and Control, CRC Press, Boca Raton, FL.Search in Google Scholar

Nelles, O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models, Springer, Berlin/Heidelberg.Search in Google Scholar

Ogata, K. (2004). System Dynamics, Pearson/Prentice Hall, Upper Saddle River, NJ.Search in Google Scholar

Patton, R.J., Korbicz, J., Witczak, M. and Uppal, F. (2005). Combined computational intelligence and analytical methods in fault diagnosis, IEE Control Engineering Series70: 349.10.1049/PBCE070E_ch11Search in Google Scholar

Pedro, J.O. and Dahunsi, O.A. (2011). Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system, International Journal of Applied Mathematics and Computer Science21(1): 137–147, DOI: 10.2478/v10006-011-0010-5.10.2478/v10006-011-0010-5Search in Google Scholar

Przybył, A. and Jelonkiewicz, J. (2003). Genetic algorithm for observer parameters tuning in sensorless induction motor drive, Proceedings of the 6th International Conference on Neural Networks and Soft Computing, Zakopane Poland, pp. 376–381.Search in Google Scholar

Puig, V., Witczak, M., Nejjari, F., Quevedo, J. and Korbicz, J. (2007). A GMDH neural network-based approach to passive robust fault detection using a constraint satisfaction backward test, Engineering Applications of Artificial Intelligence20(7): 886–897.10.1016/j.engappai.2006.12.005Search in Google Scholar

Quah, K.H. and Quek, C., (2006). FITSK: Online local learning with generic fuzzy input Takagi–Sugeno–Kang fuzzy framework for nonlinear system estimation, IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics36(1): 166-178.10.1109/TSMCB.2005.85671516468575Search in Google Scholar

Roffel, B. and Betlem, B.H. (2004). Advanced Practical Process Control, Springer, Berlin/Heidelberg.10.1007/978-3-642-18258-7Search in Google Scholar

Rüping, S. (2006). Learning Interpretable Models, Ph.D. thesis, Technical University of Dortmund, Dortmund.Search in Google Scholar

Rutkowski, L. (2008). Computational Intelligence: Methods and Techniques, Springer, Berlin/Heidelberg.Search in Google Scholar

Rutkowski, L. and Cpałka, K. (2005). Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems, IEEE Transactions on Fuzzy Systems13(1): 140–151.10.1109/TFUZZ.2004.836069Search in Google Scholar

Salapa, K., Trawińska, A., Roterman, I. and Tadeusiewicz, R. (2014). Speaker identification based on artificial neural networks. Case study: The Polish vowel (a pilot study), Bio-Algorithms and Med-Systems10(2): 91–99.Search in Google Scholar

Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems8(5): 509–522.10.1109/91.873575Search in Google Scholar

Schröder, D. (Ed.) (2000). Intelligent Observer and Control Design for Nonlinear Systems, Springer, Berlin/Heidelberg.10.1007/978-3-662-04117-8Search in Google Scholar

Shill, P., Akhand, M. and Murase, K. (2011). Simultaneous design of membership functions and rule sets for type-2 fuzzy controllers using genetic algorithms, 14th International Conference on Computer and Information Technology, Dhaka, Bangladesh, pp. 554–559.Search in Google Scholar

Shukla, P. and Tripathi, S. (2013). Interpretability issues in evolutionary multi-objective fuzzy knowledge base systems, 7th International Conference on Bio-Inspired Computing: Theories and Applications, Madhya Pradesh, India, pp. 473–484.Search in Google Scholar

Sivanandam, S. and Deepa, S. (2008). Genetic Algorithm Optimization Problems, Springer, Berlin/Heidelberg.Search in Google Scholar

Starczewski, J.T., Bartczuk, Ł., Dziwiński, P. and Marvuglia, A. (2010). Learning methods for type-2 FLS based on FCM, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 224–231.10.1007/978-3-642-13208-7_29Search in Google Scholar

Tadeusiewicz, R. (2010). Using neural networks for simplified discovery of some psychological phenomena, in L. Rutkowski et al. (Eds.), Artificial Intelligence and Soft Computing, Springer, Berlin/Heidelberg, pp. 104–123.10.1007/978-3-642-13232-2_14Search in Google Scholar

Tadeusiewicz, R., Chaki, R. and Chaki, N. (2014). Exploring Neural Networks with C#, CRC Press, Boca Raton, FL.Search in Google Scholar

Tadeusiewicz, R. and Figura, I. (2011). Phenomenon of tolerance to damage in artificial neural networks, Computer Methods in Materials Science11(4): 501–513.Search in Google Scholar

Tan, Y. (2004). Time-varying time-delay estimation for nonlinear systems using neural networks, International Journal of Applied Mathematics and Computer Science14(1): 63–68.Search in Google Scholar

Wang, H., Kwong, S., Jin, Y., Wei, W. and Man, K.-F. (2005). Agent-based evolutionary approach for interpretable rule-based knowledge extraction, IEEE Transactions on Systems, Man, and Cybernetics C: Applications and Reviews35(2): 143–155.10.1109/TSMCC.2004.841910Search in Google Scholar

Wang, H., Kwong, S., Jin, Y., Wei, W. and Man, K.-F. (2005). Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction, Fuzzy Sets and Systems149(1): 149–186.10.1016/j.fss.2004.07.013Search in Google Scholar

Wilamowski, B.M. (2005). Methods of computational intelligence for nonlinear control systems, ICCAE 2005 International Conference on Control, Automation and System, Gyeonggi-Do, Korea, pp. P1–P8.Search in Google Scholar

Witkowska, A. andŚmierzchalski, R. (2012). Designing a ship course controller by applying the adaptive backstepping method, International Journal of Applied Mathematics and Computer Science22(4): 985–997, DOI: 10.2478/v10006-012-0073-y.10.2478/v10006-012-0073-ySearch in Google Scholar

Wu, C.-J. and Liu, G.-Y. (2000). A genetic approach for simultaneous design of membership functions and fuzzy control rules, Journal of Intelligent and Robotic Systems28(3): 195–211.Search in Google Scholar

Xie, Y., Guo, B., Xu, L., Li, J. and Stoica, P. (2006). Multistatic adaptive microwave imaging for early breast cancer detection, IEEE Transactions on Biomedical Engineering53(8): 1647.10.1109/TBME.2006.87805816916099Search in Google Scholar

Zhou, S.-M., Gan, J. Q. (2008). Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling, Fuzzy Sets and Systems159(23): 3091–3131.10.1016/j.fss.2008.05.016Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics