Cite

Belter, D., Łabecki, P. and Skrzypczyński, P. (2012). Estimating terrain elevation maps from sparse and uncertain multi-sensor data, IEEE 2012 International Conference on Robotics and Biomimetics, Guangzhou, China, pp. 715–722.Search in Google Scholar

Belter, D., Łabecki, P. and Skrzypczyński, P. (n.d.). Adaptive motion planning for autonomous rough terrain traversal with a walking robot, Journal of Field Robotics, (in print).Search in Google Scholar

Belter, D., Nowicki, M., Skrzypczyński, P., Walas, K. and Wietrzykowski, J. (2015). Lightweight RGB-D SLAM system for search and rescue robots, in M.K.R. Szewczyk and C. Zieliński (Eds.), Recent Advances in Automation, Robotics and Measuring Techniques, Advances in Intelligent Systems and Computing, Vol. 351, Springer, Cham, pp. 11–21.10.1007/978-3-319-15847-1_2Search in Google Scholar

Belter, D. and Skrzypczyński, P. (2011a). Integrated motion planning for a hexapod robot walking on rough terrain, 18th IFAC World Congress, Milan, Italy, pp. 6918–6923.10.3182/20110828-6-IT-1002.02234Search in Google Scholar

Belter, D. and Skrzypczyński, P. (2011b). Rough terrain mapping and classification for foothold selection in a walking robot, Journal of Field Robotics28(4): 497–528.10.1002/rob.20397Search in Google Scholar

Belter, D. and Skrzypczyński, P. (2013). Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping, Industrial Robot: An International Journal40(3): 229–237.10.1108/01439911311309924Search in Google Scholar

Belter, D. and Walas, K. (2014). A compact walking robot—flexible research and development platform, in M.K.R. Szewczyk and C. Zieliński (Eds.), Recent Advances in Automation, Robotics and Measuring Techniques, Advances in Intelligent Systems and Computing, Vol. 267, Springer, Cham, pp. 343–352.10.1007/978-3-319-05353-0_33Search in Google Scholar

Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Levine, J., Sharf, A. and Silva, C. (2014). State of the art in surface reconstruction from point clouds, in S. Lefebvre and M. Spagnuolo (Eds.), Eurographics 2014—State of the Art Reports, The Eurographics Association, Geneve.Search in Google Scholar

Bloesch, M., Gehring, C., Fankhauser, P., Hutter, M., Hoepflinger, M.A. and Siegwart, R. (2013). State estimation for legged robots on unstable and slippery terrain, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 6058–6064.Search in Google Scholar

Dey, T.K., Ge, X., Que, Q., Safa, I., Wang, L. and Wang, Y. (2012). Feature-preserving reconstruction of singular surfaces, Computer Graphics Forum31(5): 1787–1796.10.1111/j.1467-8659.2012.03183.xSearch in Google Scholar

Dryanovski, I., Morris, W. and Xiao, J. (2010). Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1553–1559.Search in Google Scholar

Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M. and Siegwart, R. (2014). Robot-centric elevation mapping with uncertainty estimates, International Conference on Climbing and Walking Robots (CLAWAR), Poznań, Poland, pp. 433–440.Search in Google Scholar

Handa, A., Whelan, T., McDonald, J. and Davison, A. (2014). A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM, IEEE International Conference on Robotics and Automation, ICRA, Hong Kong, China, pp. 1524–1531.Search in Google Scholar

Hebert, M., Caillas, C., Krotkov, E. and Kweon, I. (1989). Terrain mapping for a roving planetary explorer, Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, pp. 997–1002.Search in Google Scholar

Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C. and Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees, Autonomous Robots34(3): 189–206.10.1007/s10514-012-9321-0Search in Google Scholar

Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M.A., Remy, C.D. and Siegwart, R. (2012). StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion, International Conference on Climbing and Walking Robots (CLAWAR), Baltimore, MD, USA, pp. 483–490.Search in Google Scholar

Kleiner, A. and Dornhege, C. (2007). Real-time localization and elevation mapping within urban search and rescue scenarios, Journal of Field Robotics24(8–9): 723–745.10.1002/rob.20208Search in Google Scholar

Khoshelham, K. and Elberink, S. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications, Sensors12(2): 1437–1454.10.3390/s120201437330412022438718Search in Google Scholar

Kolter, J., Kim, Y. and Ng, A. (2009). Stereo vision and terrain modeling for quadruped robots, Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 1557–1564.Search in Google Scholar

Konolige, K. (1997). Small vision systems: Hardware and implementation, 8th International Symposium on Robotics Research, Monterey, CA, USA, pp. 111–116.Search in Google Scholar

Kweon, I. and Kanade, T. (1992). High-resolution terrain map from multiple sensor data, IEEE Transactions on Pattern Analysis and Machine Intelligence14(2): 278–292.10.1109/34.121795Search in Google Scholar

Łabecki, P. and Belter, D. (2014). RGB-D based mapping method for a legged robot, in C.Z.K. Tchoń (Ed.), Zeszyty Naukowe Politechniki Warszawskiej, Warsaw University of Technology Press, Warsaw, pp. 297–306, (in Polish).Search in Google Scholar

Łabecki, P. and Skrzypczyński, P. (2013). Spatial uncertainty assessment in visual terrain perception for a mobile robot, in J. Korbicz and M. Kowal (Eds.), Intelligent Systems in Technical and Medical Diagnostics, Advances in Intelligent Systems and Computing, Vol. 230, Springer-Verlag, Berlin, pp. 357–368.Search in Google Scholar

Matthies, L. and Shafer, S. (1987). Error modeling in stereo navigation, International Journal of Robotics and Automation3(3): 239–248.10.1109/JRA.1987.1087097Search in Google Scholar

Nowicki, M. and Skrzypczyński, P. (2013). Combining photometric and depth data for lightweight and robust visual odometry, European Conference on Mobile Robots, Barcelona, Spain, pp. 125–130.Search in Google Scholar

Park, J.-H., Shin, Y.-D., Bae, J.-H. and Baeg, M.-H. (2012). Spatial uncertainty model for visual features using a kinect sensor, Sensors12(7): 8640–8662.10.3390/s120708640344406723012509Search in Google Scholar

Pfaff, P., Triebel, R. and Burgard, W. (2007). An efficient extension to elevation maps for outdoor terrain mapping and loop closing, International Journal of Robotics Research26(2): 217–230.10.1177/0278364906075165Search in Google Scholar

Plagemann, C., Mischke, S., Prentice, S., Kersting, K., Roy, N. and Burgard, W. (2008). Learning predictive terrain models for legged robot locomotion, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 3545–3552.Search in Google Scholar

Poppinga, J., Birk, A. and Pathak, K. (2010). A characterization of 3D sensors for response robots, in J. Baltes et al. (Eds.), RoboCup 2009, Lecture Notes in Artificial Intelligence, Vol. 5949, Springer, Berlin, pp. 264–275.10.1007/978-3-642-11876-0_23Search in Google Scholar

Rusu, R., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J.-C. and Beetz, M. (2009). Leaving flatland: Efficient real-time three-dimensional perception and motion planning, Journal of Field Robotics26(10): 841–862.10.1002/rob.20313Search in Google Scholar

Saarinen, J., Andreasson, H., Stoyanov, T. and Lilienthal, A.J. (2013). 3D normal distributions transform occupancy maps: An efficient representation for mapping in dynamic environments, International Journal of Robotics Research32(14): 1627–1644.10.1177/0278364913499415Search in Google Scholar

Sahabi, H. and Basu, A. (1996). Analysis of error in depth perception with vergence and spatially varying sensing, Computer Vision and Image Understanding63(3): 447–461.10.1006/cviu.1996.0034Search in Google Scholar

Sharf, A., Lewiner, T., Shklarski, G., Toledo, S. and Cohen-Or, D. (2007). Interactive topology-aware surface reconstruction, ACM Transactions on Graphics26(3), Article No. 43.Search in Google Scholar

Skrzypczyński, P. (2007). Spatial uncertainty management for simultaneous localization and mapping, Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 4050–4055.Search in Google Scholar

Skrzypczyński, P. (2009). Simultaneous localization and mapping: A feature-based probabilistic approach, International Journal of Applied Mathematics and Computer Science19(4): 575–588, DOI: 10.2478/v10006-009-0045-z.10.2478/v10006-009-0045-zSearch in Google Scholar

Stelzer, A., Hirschmuller, H. and Gorner, M. (2012). Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain, International Journal of Robotics Research31(4): 381–402.10.1177/0278364911435161Search in Google Scholar

Szeliski, R. (2011). Computer Vision, Algorithms and Applications, Springer, London.10.1007/978-1-84882-935-0Search in Google Scholar

Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics and Autonomous Agents), The MIT Press, Cambridge, MA.Search in Google Scholar

Walas, K. and Belter, D. (2011). Supporting locomotive functions of a six-legged walking robot, International Journal of Applied Mathematics and Computer Science21(2): 363–377, DOI: 10.2478/v10006-011-0027-9.10.2478/v10006-011-0027-9Search in Google Scholar

Walas, K. and Nowicki, M. (2014). Terrain classification using Laser Range Finder, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, pp. 5003–5009.Search in Google Scholar

Ye, C. and Borenstein, J. (2004). A novel filter for terrain mapping with laser rangefinders, IEEE Transactions on Robotics and Automation20(5): 913–921.10.1109/TRO.2004.829457Search in Google Scholar

Yoon, S., Hyung, S., Lee, M., Roh, K., Ahn, S., Geeb, A., Bunnunb, P., Calwayb, A. and Mayol-Cuevas, W. (2013). Real-time 3D simultaneous localization and map-building for a dynamic walking humanoid robot, Advanced Robotics27(10): 759–772.10.1080/01691864.2013.785379Search in Google Scholar

Zucker, M., Bagnell, J., Atkeson, C. and Kuffner, J. (2010). An optimization approach to rough terrain locomotion, IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 3589–3595.Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics