Open Access

Pro-Tumor and Anti-Tumor Functions of IL-17 and of TH17 Cells in Tumor Microenvironment


Cite

1. Romagnani S. Human Th17 cells. Arthritis Research and Therapy 2008;10:206-2013.10.1186/ar2392245375618466633Search in Google Scholar

2. Romagnani S, Maggi E, Liotta F, Cosmi L, Annunziato F. Properties and origin of human Th17 cells. Molecular Immunology 2009;47:3-7.10.1016/j.molimm.2008.12.01919193443Search in Google Scholar

3. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010;28:445-489.10.1146/annurev-immunol-030409-101212350261620192806Search in Google Scholar

4. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry Part A 2014;85A;36-42.10.1002/cyto.a.2234824009159Search in Google Scholar

5. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S. Phenotypic and functional features of human Th17 cells. J Exp Med 2007;204:1849-1861.10.1084/jem.20070663211865717635957Search in Google Scholar

6. Hammerich L, Heymann F, Tacke F. Role of IL-17 and Th17 cells in liver diseases. Clinical and Developmental Immunology 2011; 2011:345803.10.1155/2011/345803301066421197451Search in Google Scholar

7. Ivanova EA, Orekhov AN. T helper lymphocyte subsets and plasticity in autoimmunity and cancer: an overview. BioMed Research International 2015, article ID 327470, 9 pages http://dx.doi.org/10.1155/2015/32747010.1155/2015/327470463700826583100Search in Google Scholar

8. Golubovskaya V, Wu L. Different subsets of T cells memory, effector functions, and CAR-T immunotherapy. Cancers 2016;8(36), doi:10.3390/cancers8030036Search in Google Scholar

9. Mosmann TR, Cherwinski H, Bond MW. Two types of murine helper T cell clone. I. Defi nition according to profi les of lymphokine activities and secreted proteins. Journal of Immunology 1986;136(7):2348-2357.Search in Google Scholar

10. Cohen PA, Peng L, Plautz GE, Kim JA,Weng DE, Shu S. CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 2000;20:17-56.10.1615/CritRevImmunol.v20.i1.20Search in Google Scholar

11. Kalams SA, Walker BD. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Med 1998;188:2199-2204.10.1084/jem.188.12.219922124259858506Search in Google Scholar

12. Ossendorp F, Toes RE, Offringa R, van der Burg SH, Melief CJ. Importance of CD(4+) T helper cell responses in tumor immunity. Immunol Lett 2000;74:75-79.10.1016/S0165-2478(00)00252-2Search in Google Scholar

13. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nature Reviews Immunology 2002;2(12):933-944.10.1038/nri954Search in Google Scholar

14. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996;383:787-793.10.1038/383787a0Search in Google Scholar

15. O’Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends in Cell Biology 2000;10(12):542-550.10.1016/S0962-8924(00)01856-0Search in Google Scholar

16. Amsen D, Spilianakis CG, Flavell RA. How are Th1 and Th2 effector cells made. Curr Opin Immunol 2009;21:153-160.10.1016/j.coi.2009.03.010269525619375293Search in Google Scholar

17. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nature Reviews Immunology 2015;15(5):295-307.10.1038/nri3824444572825848755Search in Google Scholar

18. Neil DR, McKenzie ANJ. TH9: the latest addition to the expanding repertoire of IL-25 targets. Immunology and Cell Biology 2010;88:502-504.10.1038/icb.2010.4320309011Search in Google Scholar

19. Kaplan MH. Th9 cells: differentiation and disease. Immunology review 2013;252(1):104-115.10.1111/imr.12028398292823405898Search in Google Scholar

20. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. Identifi cation of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH17, TH1 and TH2 cells. Nature Immunology 2009;10(8):864-871.10.1038/ni.177019578368Search in Google Scholar

21. Zhuang Y, Peng L-S, Zhao Y-L, Shi Y, Mao XH, Guo G, Chen W, Liu XF, Zhang JY, Liu T, Luo P, Yu PW, Zou QM. Increased intratumoral IL-22-producing CD4+ T cells and Th-22 correlate with gastric cancer progression and predict poor patient survival. Cancer Immunology, Immunotherapy 2012;61(11):1965-1975.10.1007/s00262-012-1241-522527243Search in Google Scholar

22. Kobold S, Volk S, Clauditz T, Kupper NJ, Minner S, Tufman A, Duwell P, Lindner P, Koch I, Heidegger S, Rothenfuβer S, Schnurr M. Interleukin-22 is frequently expressed in small- and large- cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. Journal of Thoracic Oncology 2013;8(8):1032-1042.10.1097/JTO.0b013e31829923c8Search in Google Scholar

23. Jia L, Wu C. The biology and functions of Th22 cells. In: T Helper Cell Differentiation and Their Function, 2014, vol. 841 of Advances in Experimental Medicine and Biology pp. 209-230.10.1007/978-94-017-9487-9_8Search in Google Scholar

24. Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. The Journal of Experimental Medicine 2012;209(7):1241-1253.10.1084/jem.20120994Search in Google Scholar

25. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775 - 787.10.1016/j.cell.2008.05.009Search in Google Scholar

26. Numasaki M, Fukushi J-I, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H, Lotze PJ. Interleukin-17 promotes angiogenesis and tumor growth. Blood 2003;101:2620-2627.10.1182/blood-2002-05-1461Search in Google Scholar

27. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010;127:759-767.10.1002/ijc.25429Search in Google Scholar

28. Li MO, Sanjabi S, Flavell R. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 2006;25(3):455-471.10.1016/j.immuni.2006.07.011Search in Google Scholar

29. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology 2003;4(4):330-336.10.1038/ni904Search in Google Scholar

30. Moseley TA, Haudenschild DR, Rose L, Reddi AH. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Review 2003;14:155-174.10.1016/S1359-6101(03)00002-9Search in Google Scholar

31. Takahashi N, Vanlaere I, de Rycke R, et al. IL-17 produced by Paneth cells drives TNF-induced shock. J Exp Med 2008;205 (8):1755-1761. 10.1084/jem.20080588252558318663129Search in Google Scholar

32. Murugaiyan G, Saha B. Protumor vs Antitumor functions of IL-17. J Immunol 2009;183:4169- 4175.10.4049/jimmunol.090101719767566Search in Google Scholar

33. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clinical and Developmental Immunology 2013; article ID 436307: 7.10.1155/2013/436307387065024382972Search in Google Scholar

34. Li L, Boussiotis V. The role of IL-17-producing Foxp3+ CD4+ T cells in infl ammatory bowel disease and colon cancer. Clin Immunol 2013;148(2): doi:10.1016/j.clim.2013.05.003.Search in Google Scholar

35. Huber M, Heink S, Pagenstecher A, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 2013;123(1):247-260.10.1172/JCI63681353328323221338Search in Google Scholar

36. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, Dalod M, Soumelis V, Amigorena S. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity. 2013 Feb 21;38(2):336-48.10.1016/j.immuni.2012.10.01823352235Search in Google Scholar

37. Jovanovich DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP. IL-17 stimulates the production and expression of proinfl ammatory cytokines, IL-beta and TNFalpha, by human macrophages. J Immunol. 1998 Apr 1;160(7):3513-21.Search in Google Scholar

38. Chen Z, O‘Shea JJ. Th17 cells: a new fate for differentiating helper T cells. Immunol Res. 2008;41(2):87-102.10.1007/s12026-007-8014-918172584Search in Google Scholar

39. Volpe E, Servant N, Zollinger R, Bogiatzi SI, Hupé P, Barillot E, Soumelis V. A critical function for transforming growth factor-beta, interleukin 23 and proinfl ammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol. 2008 Jun;9(6):650-7.10.1038/ni.161318454150Search in Google Scholar

40. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinfl ammatory IL-17+ T helper cells. Cell. 2006 Sep 22;126(6):1121-33.10.1016/j.cell.2006.07.03516990136Search in Google Scholar

41. Acosta-Rodriguez L, Rivino J, Geginat D, Jarrossay M, Gattorno A, Lanzavecchia M, Sallusto F, Napolitani F. Surface phenotype and antigenic specifi city of human interleukin 17-producing T helper memory cells. Nat Immunol 2007; 8:639-646.10.1038/ni146717486092Search in Google Scholar

42. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol 2008;9:641-649.10.1038/ni.1610259739418454151Search in Google Scholar

43. Mangan PR, Harrington LE, O‘Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006 May 11;441(7090):231-4.10.1038/nature0475416648837Search in Google Scholar

44. Torchinsky M, Blander J. T helper cells: discovery, function, and physiological trigger. Cell Mol Life Sci 2010;67:1407-1421.10.1007/s00018-009-0248-320054607Search in Google Scholar

45. Quyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in infl ammation. Immunity 2008;28(4):454-467.10.1016/j.immuni.2008.03.004342450818400188Search in Google Scholar

46. Su X, Ye J, Hsueh EC, Zhang , Hoft DF, Peng G. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. The Journal of Immunology 2010;184:1630-1641.10.4049/jimmunol.090281320026736Search in Google Scholar

47. Laurence A, O’Shea JJ. T(H)-17 differentiation: of mice and men. Nat Immunol 2007;8:903-905.10.1038/ni0907-90317712339Search in Google Scholar

48. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal Malefyt R. Development, cytokine profi le and function of human interleukin 17-producing helper T cells. Nat Immunol. 2007 Sep;8(9):950-7.10.1038/ni149717676044Search in Google Scholar

49. Van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW, Zaat SA, Kapsenberg ML, de Jong EC. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007;27:660-669.10.1016/j.immuni.2007.08.01317919942Search in Google Scholar

50. Miyahara Y, Odunsi K, Chen G, Peng J, Matsuzaki J, Wang RF. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA 2008;105:15505-15510.10.1073/pnas.0710686105256312918832156Search in Google Scholar

51. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagla N, Lee C, Marberger MJ. Expression and function of pro-infl ammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 2003;56:171-182. 10.1002/pros.1023812772186Search in Google Scholar

52. Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, Xue X, Wei G, Liu X, Fang G. The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 2008;374:533-537.10.1016/j.bbrc.2008.07.06018655770Search in Google Scholar

53. McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, Cua DJ. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007;8:1390-1397.10.1038/ni153917994024Search in Google Scholar

54. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S, Inagaki H, Ueda R. Specifi c recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilige. Cancer Res 2006;66:5716-5722.10.1158/0008-5472.CAN-06-026116740709Search in Google Scholar

55. Liu SJ, Tsai JP, Shen CR, Sher YP, Hsieh CL, Yeh YC, Chou AH, Chang SR, Hsiao KN, Yu FW, Chen HW. Induction of a distinct CD8 Tnc17 subset by transforming growth factor-β and interleukin-6. J Leukocyte Biol 2007;82:354-360.10.1189/jlb.020711117505023Search in Google Scholar

56. Wang J, Xu K, Wu J, Luo C, Li Y, Wu X, Gao H, Feng G, Yuan B-Z. The changes of Th17 cells and the related cytokines in the progression of human colorectal cancers. BMC Cancer 2012;12:418-428.10.1186/1471-2407-12-418348833222994684Search in Google Scholar

57. Liao R, Sun J, Wu H, Yi Y, Wang J-X, He H-W, Cai X-Y, Zhou J, Cheng Y-F, Fan J, Qiu S-J. High expression of IL-17 and IL17RE associate with poor prognosis of hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research 2013;32:3-14.10.1186/1756-9966-32-3362161523305119Search in Google Scholar

58. Lim HW, Lee J, Hillsamer P, Kim CH. Human Th17 cells share major traffi cing receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J Immunol 2008;180:122-129.10.4049/jimmunol.180.1.12218097011Search in Google Scholar

59. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity 2008;28:445-453.10.1016/j.immuni.2008.03.00118400187Search in Google Scholar

60. Kryczek I, Wei S, Zou L, Altuwaijri S, Szeliga W, Kolls J, Chang A, Zou W. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol 2007;178:6730-6733.10.4049/jimmunol.178.11.673017513719Search in Google Scholar

61. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 2008;112:2340-2352.10.1182/blood-2008-01-13396718617638Search in Google Scholar

62. Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Rolinski J, Radwan P, Fang J, Wang G, Zou W. IL-17+ regulatory T cells in the microenvironments of chronic infl ammation and cancer. J Immunol 2011;186:4388-4395.10.4049/jimmunol.100325121357259Search in Google Scholar

63. Ma C, Dong X. Colorectal cancer-derived Foxp3+IL-17+ T cells suppress tumor specific CD8+ T cells. Scandinavian Journal of Immunology 2011:47-51.10.1111/j.1365-3083.2011.02539.xSearch in Google Scholar

64. Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T, Yang P. Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. Journal of Leukocyte Biology 2011;89:85-91.10.1189/jlb.0910506Search in Google Scholar

65. Massague J. TGF-β in cancer. Cell 2008;134:215-230.10.1016/j.cell.2008.07.001Search in Google Scholar

66. Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 2011;407:348-354.10.1016/j.bbrc.2011.03.021Search in Google Scholar

67. Blankenstein T, Qin Z. The role of IFN-γ in tumor transplantation immunity and inhibition of chemical carcinogenesis. Curr Opin Immunol 2003;15:148-154.10.1016/S0952-7915(03)00007-4Search in Google Scholar

68. Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang YA, Laurence A, Michalowska A, Mamura M, Lonning S, Berzofsky JA, Wakefi eld LM. Transforming growth factor beta subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res. 2008 May 15;68(10):3915-23.10.1158/0008-5472.CAN-08-0206258659618483277Search in Google Scholar

69. Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D, Yu H. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell 2009;15:114-123.10.1016/j.ccr.2008.12.018267350419185846Search in Google Scholar

70. Lo CH, Lee SC, Wu PY, Pan WY, Su J, Cheng CW, Roffl er SR, Chiang BL, Lee CN, Wu CW, Tao MH. Antitumor and antimetastatic activity of IL-23. J Immunol 2003;171:600-607. 10.4049/jimmunol.171.2.60012847224Search in Google Scholar

71. Shan BE, Hao JS, Li QX, Tagawa M. Antitumor activity and immune enhancement of murine interleukin-23 expressed in murine colon carcinoma cells. Cell Mol Immunol 2006;3:47-52.Search in Google Scholar

72. Chizzolini C, Chicheportiche R, Alvarez M, de Rham C, Roux-Lombard P, Ferrari-Lacraz S, Dayer JM. Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood 2008;112:3696-3703.10.1182/blood-2008-05-155408257279718698005Search in Google Scholar

73. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256-260.10.1126/science.114569717569825Search in Google Scholar

74. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA-b. Plasticity of CD4+FoxP3+ T cells. Curr Opin Immunol 2009;21:281-285.10.1016/j.coi.2009.05.007273378419500966Search in Google Scholar

75. Zhou L, Chong MM, Littman DR-a. Plasticity of CD4+ T cell lineage differentiation. Immunity 2009;30:646-655.10.1016/j.immuni.2009.05.00119464987Search in Google Scholar

76. Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafl er DA. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 2009;113:4240-4249.10.1182/blood-2008-10-183251267608419171879Search in Google Scholar

77. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, et al. Molecular antagonism and plasticity of regulatory and infl ammatory T cell programs. Immunity 2008;29:44-56.10.1016/j.immuni.2008.05.007263053218585065Search in Google Scholar

78. Zou W. Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 2006;6:295-307.10.1038/nri180616557261Search in Google Scholar

79. Takahashi H, Numasaki M, Lotze T, Sasaki H. Interleukin-17 enhances bFGF-, HGF- and VEGFinduced growth of vascular endothelial cells. Immunol Lett 2005;98:189-193.10.1016/j.imlet.2004.11.01215860217Search in Google Scholar

80. Jeon SH, Chae BC, Kim HA, Seo GY, Seo DW, Chun GT, Kim NS, Yie SW, Byeon WH, Eom SH, Ha KS, Kim YM, Kim PH. Mechanisms underlying TGF-beta1-induced expression of VEGF and Flk-1 in mouse macrophages and their implications for angiogenesis. J Leukoc Biol. 2007 Feb;81(2):557-66.10.1189/jlb.080651717053163Search in Google Scholar

81. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008;14:6735-6741.10.1158/1078-0432.CCR-07-484318980965Search in Google Scholar

82. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, Straus DS. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008 Nov 1;181(9):6536-45.10.4049/jimmunol.181.9.653618941244Search in Google Scholar

83. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K, Gattinoni L, Wrzesinski C, Hinrichs CS, Kerstann KW, Feigenbaum L, Chan CC, Restifo NP. Tumor-specifi c Th17-polarized cells eradicate large established melanoma. Blood. 2008 Jul 15;112(2):362-73.10.1182/blood-2007-11-120998244274618354038Search in Google Scholar

84. Benchetrit F, Ciree A, Vives V, Warnier G, Gey A, Sautes-Fridman C, Fossiez F, Haicheur N, Fridman WH, Tartour E. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 2002;99:2114-2121.10.1182/blood.V99.6.2114Search in Google Scholar

85. De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, Sica GS, Sileri P, Mac- Donald TT, Pallone F, Monteleone G, Stolfi C. Oncogene 2014;1-11.Search in Google Scholar

86. Zamarron BF, Chen WJ. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011;7(5):651-658.10.7150/ijbs.7.651310747321647333Search in Google Scholar

eISSN:
0324-1750
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other