Open Access

Minimal Kinematic Boundary Conditions for Computational Homogenization of the Permeability Coefficient


Cite

1. Babuška I., Strouboulis T. (2001), The finite element method and its reliability, Clarendon Press, Oxford.Search in Google Scholar

2. Bertsekas D.P. (1982), Constrained optimization and Lagrange multiplier methods, Athena Scientific, Belmont, Massachusetts.Search in Google Scholar

3. Boutin C., Kacprzak G., Thiep D. (2011), Compressibility and permeability of sand–kaolin mixtures. Experiments versus non-linear homogenization schemes, International Journal for Numerical and Analytical Methods in Geomechanics, 35(1), 21-52.10.1002/nag.891Search in Google Scholar

4. Brenner S.C., Scott R. (2007), The mathematical theory of finite element methods (Vol. 15), Springer Science & Business Media.Search in Google Scholar

5. Chapuis R.P. (1990), Sand-bentonite liners: predicting permeability from laboratory tests, Canadian Geotechnical Journal, 27(1), 47-57.10.1139/t90-005Open DOISearch in Google Scholar

6. Du X., Ostoja-Starzewski M. (2006), On the size of representative volume element for Darcy law in random media, in Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 462(2074), 2949-2963, The Royal Society.Search in Google Scholar

7. Feyel F. (2003), A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, 192(28), 3233-3244.10.1016/S0045-7825(03)00348-7Search in Google Scholar

8. Geers M.G.D., Kouznetsova V.G., Brekelmans W.A.M. (2001), Gradient-enhanced computational homogenization for the micro-macro scale transition, Le Journal de Physique IV, 11(PR5), Pr5-145.10.1051/jp4:2001518Search in Google Scholar

9. Hill R. (1965), Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13(2), 89-101.10.1016/0022-5096(65)90023-2Open DOISearch in Google Scholar

10. Inglis H.M., Geubelle P.H., Matouš K. (2008), Boundary condition effects on multiscale analysis of damage localization, Philosophical Magazine, 88(16), 2373-2397.10.1080/14786430802345645Search in Google Scholar

11. Juang, C.H., Holtz R.D. (1986), Fabric, pore size distribution, and permeability of sandy soils, Journal of Geotechnical Engineering, 112(9), 855-868.10.1061/(ASCE)0733-9410(1986)112:9(855)Search in Google Scholar

12. Kacprzak G. (2006), Etude du comportement mécanique des mélanges sable/argile, PhD ENTPE/INSA, Lyon.Search in Google Scholar

13. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M. (2010), Computational homogenisation for non-linear heterogeneous solids, Multiscale Modeling in Solid Mechanics: Computational Approaches, 3, 1-42.10.1142/9781848163089_0001Search in Google Scholar

14. Mesarovic S.D., Padbidri J. (2005), Minimal kinematic boundary conditions for simulations of disordered microstructures, Philosophical Magazine, 85(1), 65-78.10.1080/14786430412331313321Search in Google Scholar

15. Revil A., Cathles L.M. (1999), Permeability of shaly sands, Water Resources Research, 35(3), 651-662.10.1029/98WR02700Open DOISearch in Google Scholar

16. Wojciechowski M. (2014) Fempy – finite element method in python, http://fempy.org, http://geotech.p.lodz.pl:5080/fempy, last access: August 2017.Search in Google Scholar

17. Wojciechowski M., Lefik M. (2016), On the static nature of minimal kinematic boundary conditions, Engineering Transactions, 64(4), 581-587.Search in Google Scholar