Open Access

Surface Layer Properties of Low-Alloy High-Speed Steel after Grinding


Cite

1. Abidi H., Rezaei S.M., Sarhan A.A.D. (2013), Analitycal modeling of grinding wheel loading phenomena, International Journal of Advanced Manufacturing Technology, 68(1-4), 473-485.10.1007/s00170-013-4745-zSearch in Google Scholar

2. Arsecularatne J.A., Zhang L.C., Montross C. (2006), Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, International Journal of Machine Tools and Manufacture, 46(5), 482-491.10.1016/j.ijmachtools.2005.07.015Search in Google Scholar

3. Bonek M. (2014), The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying, Archives of Metallurgy and Materials, 59, 1647-1651.10.2478/amm-2014-0280Search in Google Scholar

4. Brinksmeier E., Heinzel C., Wittmann M. (1999), Friction, cooling and lubrication in grinding, CIRP Annals - Manufacturing Technology, 48(2), 581-598.10.1016/S0007-8506(07)63236-3Search in Google Scholar

5. Ding Z., Li B., Liang S.Y. (2015), Phase transformations and residual stress of Maraging C250 steel during grinding, Materials Letters, 154, 37-39.10.1016/j.matlet.2015.04.040Search in Google Scholar

6. El-Rakayby A.M., Mills, B. (2013), On the microstructure and mechanical properties of high-speed steels, Journal of Materials Science, 23(12), 4340-4344.10.1007/BF00551928Search in Google Scholar

7. El-Shall H. (1984), Physico-chemical asects of grinding: a review of use of additives, Powder Technology, 38, 275-293.10.1016/0032-5910(84)85009-3Search in Google Scholar

8. Foeckerer T., Zaeh M.F., Zhang O.B. (2013), A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening, International Journal of Heat and Mass Transfer, 56(1–2), 223-237.10.1016/j.ijheatmasstransfer.2012.09.029Search in Google Scholar

9. Gu R.J., Shillor M., Barber G.C., Jen T. (2004), Thermal analysis of the grinding process, Mathematical and Computer Modelling, 39(9-10), 991-1003.10.1016/S0895-7177(04)90530-4Search in Google Scholar

10. Hou Z.B., Komanduri R. (2004), On the mechanics of the grining process, Part II—thermal analysis of the fine grinding, International Journal of Machine Tools and Manufacture, 44(2-3), 247-270.10.1016/j.ijmachtools.2003.09.008Search in Google Scholar

11. Jaworski J., Kluz R., Trzepieciński T. (2014), The influence of machining parameters on the place of formation and intensity of the wear process of drills, Tribologia, 45(3), 81-90 (in Polish).Search in Google Scholar

12. Jaworski J., Kluz R., Trzepieciński T. (2016), Operational tests of wear dynamics of drills made of low-alloy high-speed HS2-5-1 steel, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 18(2), 271-277.10.17531/ein.2016.2.15Search in Google Scholar

13. Jaworski J., Trzepieciński T. (2016a), Grindability of selected grades of low-alloy high-speed steel, Advances in Science and Technology Research Journal, 10(31), 222-228.10.12913/22998624/64018Search in Google Scholar

14. Jaworski J., Trzepieciński T. (2016b), Research on durability of the turning tools made of low-alloy high-speed steels, Kovové Materialy – Metallic Materials, 54(1), 17-25.10.4149/km_2016_1_17Search in Google Scholar

15. Józwik J., Pietras P. (2013), Investigation and assessment of occupational risk of the metal cutting machine tool stand, Advances in Science and Technology Research Journal, 7(20), 47-54.10.5604/20804075.1073057Search in Google Scholar

16. Krajnik P., Drazumeric R., Badger J., Kopač J., Nicolescu C.M. (2011), Particularities of grinding high speed steel punching tools, Advanced Materials Research, 325, 177-182.10.4028/www.scientific.net/AMR.325.177Search in Google Scholar

17. Kulesza E., Dąbrowski J.R., Sidun J., Neyman A., Mizera J. (2012), Freeting wear of materials - methodological aspects of research, Acta Mechanica et Automatica, 6(3), 58-61.Search in Google Scholar

18. Lefebvre A., Lanzetta F., Lipinski P., Torrance A.A. (2012), Measurement of grinding temperatures using a foil/workpiece thermocouple, International Journal of Machine Tools and Manufacture, 58, 1-10.10.1016/j.ijmachtools.2012.02.006Search in Google Scholar

19. Lefebvre A., Lipinski P., Vieville P., Lescalier C. (2008), Experimental analysis of temperature in grinding at the global and local scales, Machining Science and Technology, 12(1), 1-14.10.1080/10910340701873489Search in Google Scholar

20. Li H.N., Axinte D. (2016), Textured grinding wheels: A review, International Journal of Machine Tools and Manufacture, 109, 8-35.10.1016/j.ijmachtools.2016.07.001Search in Google Scholar

21. Littman, W. E., Wulff, J. (1955), The influence of the grinding process on the structure of hardened steels, Transactions of the American Society for Metals, 47, 692-714.Search in Google Scholar

22. Malkin S., Guo C. (2007), Thermal analysis of grinding, CIRP Annals - Manufacturing Technology, 56(2), 760-782.10.1016/j.cirp.2007.10.005Search in Google Scholar

23. Masłow E.N. (1974), Theory of material polishing, Maschinostrojenie, Moscow.Search in Google Scholar

24. Moravcik R., Stefanikova M., Cicka R., Caplovic L., Kocurova K., Sturm R. (2012), Phase transformations in high alloy cold work tool steel, Strojniski Vjesnik - Journal of Mechanical Engineering, 58(12), 709-715.10.5545/sv-jme.2012.531Search in Google Scholar

25. Oliveira J.F.G., Silva E.J., Guo C., Hashimoto F. (2009), Industrial challenges in grinding, CIRP Annals - Manufacturing Technology, 58(2), 663-680.10.1016/j.cirp.2009.09.006Search in Google Scholar

26. Romano P., Velasco F.J., Torralba J.M., Candela N. (2006), Processing of M2 powder metallurgy high-speed steel by 419(1-2), 1-7.10.1016/j.msea.2005.07.063Search in Google Scholar

27. Rowe W.B., Black S.C.E., Mills B. (1995), Experimental investigation of heat transfer in grinding, CIRP AnnalsManufacturing Technology, 44(1), 329-332.10.1016/S0007-8506(07)62336-1Search in Google Scholar

28. Sallem H., Hamdi H. (2015), Analysis of measured and predicted residual stresses induced by finish cylindrical grinding of high speed steel with CBN wheel, Procedia CIRP, 31, 381-386.10.1016/j.procir.2015.03.080Search in Google Scholar

29. Sinopalnikow W.A., Grigoriew S.N. (2003), Reliability and diagnosis of technological systems, MGU Stankin, Moscow.Search in Google Scholar

30. Tawakoli T., Hadad M., Sadeghi M.H., Daneshi A., Sadeghi B. (2011), Minimum quantity lubrication in grinding: effects of abrasive and coolant–lubricant, Journal of Cleaner Production, 19(17–18), 2088-2099.10.1016/j.jclepro.2011.06.020Search in Google Scholar

31. Torrance A.A. (1978), Metallurgical effects associated with grinding, Proceedings of 19th Machine Tool Design and Research Conference, Manchester, England, 637-644.10.1007/978-1-349-81412-1_77Search in Google Scholar

32. Uhlmann E., Lypovka P., Hochschild L., Schröer N. (2016), Influence of rail grinding process parameters on rail surface roughness and surface layer hardness, Wear, 366-367, 287-293.10.1016/j.wear.2016.03.023Search in Google Scholar

33. Urbaniak M. (2006), Effect of the conditioning of CBN wheels on the technological results of HS6-5-2 steel grinding, Archives of Civil and Mechanical Engineering, 6(2), 31-39.10.1016/S1644-9665(12)60251-9Search in Google Scholar

34. Walton I.M., Stephenson D.J., Baldwin A. (2006), The measurement of grinding temperatures at high specific material removal rates, International Journal of Machine Tools & Manufacture, 46, 1617-1625.10.1016/j.ijmachtools.2005.09.020Search in Google Scholar

35. Weiss B., Lefebvre A., Sinot O., Marquer M., Tidu A. (2015), Effect of grinding on the sub-surface and surface of electrodeposited chromium and steel substrate, Surface and Coatings Technology, 272, 165-175.10.1016/j.surfcoat.2015.04.009Search in Google Scholar

36. Zhang D., Li C., Jia D., Zhang Y., Zhang X. (2015), Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding, Chinese Journal of Aeronautics, 28(2), 570-581.10.1016/j.cja.2014.12.035Search in Google Scholar

37. Zhou N., Peng R.L., Pettersson R. (2016), Surface integrity of 2304 duplex stainless steel after different grinding operations, Journal of Materials Processing Technology, 229, 294-304.10.1016/j.jmatprotec.2015.09.031Search in Google Scholar