Open Access

Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel

   | Jun 08, 2016

Cite

1. Abu Al Rub R.K, Voyiadjis G.Z. (2003), On the coupling of anisotropic damage and plasticity models for ductile materials, International Journal of Plasticity, 40, 2611-2643.10.1016/S0020-7683(03)00109-4Search in Google Scholar

2. Baffie, N., Stolarz, J. and Magnin, T. (2000), Influence of strain-induced martensitic transformation on fatigue short crack behaviour in an austenitic stainless steel, Matériaux & Techniques, 5-6, 57-64.10.1051/mattech/200088050057Search in Google Scholar

3. Beese A.M, Mohr D. (2011), Effect of stress triaxiality and lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, 59(7), 258-2600.10.1016/j.actamat.2010.12.040Search in Google Scholar

4. Besson J., Cailletaud G., Chaboche J.-L., Forest S. (2010), Non-Linear Mechanics of Materials, Springer.10.1007/978-90-481-3356-7Search in Google Scholar

5. Bonora N. (1997), A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, 58(1-2), 11-28.10.1016/S0013-7944(97)00074-XSearch in Google Scholar

6. Chaboche, J. (2008), A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, 24, 1642-1693.10.1016/j.ijplas.2008.03.009Search in Google Scholar

7. Cherkaoui M., Berveiller M., Lemoine X. (2000), Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels, International Journal of Plasticity, 16, 1215-1241.10.1016/S0749-6419(00)00008-5Search in Google Scholar

8. Cherkaoui M., Berveiller M., Sabar H. (1998), Micromechanical modeling of martensitic transformation induced plasticity (TRIP) in austenitic single crystals, International Journal of Plasticity, 14, 7, 597-628.10.1016/S0749-6419(99)80000-XSearch in Google Scholar

9. Diani J.M, Sabar H., Berveiller M. (1995), Micromechanical modelling of the transformation induced plasticity (TRIP) phenomenon in steels, International Journal of Engineering Science, 33, 1921-1934.10.1016/0020-7225(95)00045-YSearch in Google Scholar

10. Diani J.M., Parks D.M. (1998), Effects of strain state on the kinetics of strain induced martensite in steels, Journal of the Mechanics and Physics of Solids, 46(9), 1613-1635.10.1016/S0022-5096(98)00001-5Search in Google Scholar

11. Egner H., Skoczeń B. (2010), Ductile damage development in two-phase materials applied at cryogenic temperatures, International Journal of Plasticity, 26, 488-506.10.1016/j.ijplas.2009.08.006Search in Google Scholar

12. Egner H., Skoczeń B., Ryś M. (2015a), Constitutive and numerical modeling of coupled dissipative phenomena in 316L stainless steel at cryogenic temperatures, International Journal of Plasticity, 64, 113-133.10.1016/j.ijplas.2014.08.005Search in Google Scholar

13. Egner H., Skoczeń B., Ryś M. (2015b), Constitutive modeling of dissipative phenomena in austenitic metastable steels at cryogenic temperatures, Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading, Advanced Structured Materials, 57, Springer International Publishing.10.1007/978-3-319-14660-7_3Search in Google Scholar

14. Fischer F.D, Schlögl S.M. (1995), The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation, Mechanics of Materials, 21, 1-23.10.1016/0167-6636(94)00070-0Search in Google Scholar

15. Fischer F.D., Reisner G., Werner E., Tanaka K., Cailletaud G., Antretter T. (2000), A new view on transformation induced plasticity (TRIP), International Journal of Plasticity, 16(1-8), 723-748.10.1016/S0749-6419(99)00078-9Search in Google Scholar

16. Fisher F.D., Reisner G. (1998), A criterion for the martensitic transformation of a microregion in an elastic-plastic material, Acta Materialia 46, 2095-2102.10.1016/S1359-6454(97)00374-1Search in Google Scholar

17. Garion C., Skoczeń B. (2003), Combined Model of Strain – Induced Phase Transformation and Orthotropic Damage in Ductile Materials at Cryogenic Temperatures, International Journal of Damage Mechanics, 12(4), 331-356.10.1177/105678903036225Search in Google Scholar

18. Hallberg H., Hakansson P., Ristinmaa M. (2010), Thermo-mechanically coupled model of diffusionless phase transformation in austenitic steel, International Journal of Solids and Structures, 47, 1580-1591.10.1016/j.ijsolstr.2010.02.019Search in Google Scholar

19. Hallberg H., Hakansson P., Ristinmaa M. (2007), A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, International Journal of Plasticity, 23, 1213-1239.10.1016/j.ijplas.2006.11.002Search in Google Scholar

20. Heung N.H., Chang G.L, Chang-Seok O., Tae-Ho L., Sung-Joon K., (2004), A model for deformation behavior and mechanically induced martensitic transformation of metastable austenitic steel, Acta Materialia, 52(17), 5203-5214.Search in Google Scholar

21. Iwamoto T. (2004) Multiscale computational simulation of deformation behavior of TRIP steel with growth of martensitic particles in unit cell by asymptotic homogenization method. International Journal of Plasticity 20(4-5), 841-869.10.1016/j.ijplas.2003.05.002Search in Google Scholar

22. Ju J. (1989), On Energy – Based Coupled Elastoplastic Damage Theories: Constitutives Modelling and Computational Aspects, International Journal of Solids and Structures, 25(7), 803-833.10.1016/0020-7683(89)90015-2Search in Google Scholar

23. Kachanov L.M. (1958), On rupture time under condition of creep, Izvestia Akademi Nauk SSSR, Otd. Tekhn. Nauk., No. 8, 26-31 (in Russian).Search in Google Scholar

24. Kintzel O., Khan S., Mosler J. (2010), A novel isotropic quasi-brittle damage model applied to LCF analyses of Al2024, International Journal of Fatigue, 32, 1984-1959.10.1016/j.ijfatigue.2010.07.001Search in Google Scholar

25. Kubler R.F., Berveiller M., Buessler P. (2011), Semi phenomenological modeling of the behavior of TRIP steels, International Journal of Plasticity, 27, 299-327.10.1016/j.ijplas.2010.05.002Search in Google Scholar

26. Le Pecheur, A. (2008), Fatigue thermique d’un acier inoxydable austénitique: influence de l’état de surface par une approche multi-échelles, PhD Thesis, École Centrale des Arts et Manufactures, École Centrale Paris.Search in Google Scholar

27. Lemaitre H. (1992), A course on damage mechanics. Springer-Verlag, Berlin and New York.10.1007/978-3-662-02761-5Search in Google Scholar

28. Levitas V.I., Idesman A.V., Olson G.B. (1999), Continuum modeling of strain-induced martensitic transformation at shear band intersections, Acta Materialia 47(1), 219-233.10.1016/S1359-6454(98)00314-0Search in Google Scholar

29. Mahnken R., Schneidt A. (2010), A thermodynamics framework and numerical aspects for transformation-induced plasticity at large strains, Archives of Applied Mechanics, 80, 229-253.10.1007/s00419-009-0308-zSearch in Google Scholar

30. Murakami S. (2012), Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture, Springer: Dordrecht, Heidelberg, London, New York.10.1007/978-94-007-2666-6_1Search in Google Scholar

31. Narutani T., Olson G.B., Cohen M. (1982), Constitutive flow relations for austenitic steels during strain-induced martensitic transformation, Journal de Physique, Colloque C4, 12, 43, 429-434.10.1051/jphyscol:1982465Search in Google Scholar

32. Olson G.B., Cohen M. (1975) Kinetics of strain-induced martensitic nucleation, Metallurgical Transactions, 6A, 791-795.10.1007/BF02672301Search in Google Scholar

33. Rabotnov Yu. N. (1968), Creep rupture. In: Hetenyi M., Vincenti M. (eds) Proceedings of applied mechanics conference. Stanford University. Springer, Berlin, 342-349.Search in Google Scholar

34. Rabotnov Yu. N. (1969), Creep problems in structural members (North-Holland Series in Applied Mathematics and Mechanics). North-Holland Publishing Company, Amsterdam/London.Search in Google Scholar

35. Ryś M. (2014), Constitutive modelling and identification of parameters of 316L stainless steel at cryogenic temperatures, Acta Mechanica et Automatica, 8, 3, 136-140.10.2478/ama-2014-0024Search in Google Scholar

36. Ryś M. (2015), Modeling of damage evolution and martensitic transformation in austenitic steel at cryogenic temperature, Archive of Mechanical Engineering, LXII, 4.10.1515/meceng-2015-0029Search in Google Scholar

37. Saanouni K. (1988), On the cracking analysis of the elastoplastic media by the theory of continuum damage mechanics, PhD Thesis (in French), Universite de Technologie de Compiegne, France.Search in Google Scholar

38. Saanouni K. (2012), Damage mechanics in metal forming: Advanced modeling and numerical simulation, ISTE/Wiley, London.10.1002/9781118562192Search in Google Scholar

39. Saanouni K., Forster C., Ben Hatira F. (1994) On the anelastic flow with damage, International Journal of Damage Mechanics, 3, 140–169.10.1177/105678959400300203Search in Google Scholar

40. Santacreu P.O., Glez J.C., Chinouilh G., Frohlich T. (2006), Behaviour model of austenitic stainless steels for automotive structural parts, Steel Research International, 77(9-10), 714.10.1002/srin.200606448Search in Google Scholar

41. Skoczeń B., Bielski J., Tabin J. (2014), Multiaxial constitutive model of discontinuous plastic flow at cryogenic temperatures, International Journal of Plasticity, 55, 198-218.10.1016/j.ijplas.2013.09.004Search in Google Scholar

42. Stolarz J., Baffie N., Magnin T. (2001), Fatigue short crack behavior in metastable austenitic stainless steels with different grain size, Materials Science and Engineering A, 319-321, 521-526.10.1016/S0921-5093(01)01072-3Search in Google Scholar

43. Stringfellow, R.G., Parks, D.M., Olson, G.B. (1992) Constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metallurgica, 40, 7, 1703-171610.1016/0956-7151(92)90114-TSearch in Google Scholar

44. Suiker A.S.J., Turteltaub S. (2006), Crystalline damage development during martensitic transformation, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006.Search in Google Scholar

45. Suiker A.S.J., Turteltaub S. (2007), Numerical modeling of transformation-induced damage and plasticity in metals. Modeling and Simulation in Materials Science and Engineering, 15, 147-166.10.1088/0965-0393/15/1/S13Search in Google Scholar

46. Tomita Y, Iwamoto T. (1995) Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties. International Journal of Mechanical Sciences, 37, 1295–1305.10.1016/0020-7403(95)00039-ZSearch in Google Scholar

47. Tomita Y., Iwamoto T. (2001) Computational prediction of deformation behavior of TRIP steels under cyclic loading. International Journal of Mechanical Sciences, 43(9), 2017-2034.10.1016/S0020-7403(01)00026-1Search in Google Scholar

48. Ziętek G., Mróz Z. (2011), On the hardening rule for austenite steels accounting for the strain induced martensitic transformation, International Journal of Structural Changes in Solids, 3, 3, 21-34.Search in Google Scholar