Cite

[1] Allen, W. J., Lemkul, J. A., and Bevan, D. R. GridMAT-MD: a Grid-Based Membrane Analysis Tool for Use With Molecular Dynamics. J.Comput.Chem. 2009;30(12):1952-8.Search in Google Scholar

[2] Alsop, R. J., Maria, Schober R., and Rheinstadter, M. C. Swelling of Phospholipid Membranes by Divalent Metal Ions Depends on the Location of the Ions in the Bilayers. Soft Matter 10-8- 2016;12(32):6737-48.10.1039/C6SM00695GSearch in Google Scholar

[3] Castillo, N., Monticelli, L., Barnoud, J., and Tieleman, D. P. Free Energy of WALP23 Dimer Association in DMPC, DPPC, and DOPC Bilayers. Chem.Phys Lipids 2013;169:95-105.10.1016/j.chemphyslip.2013.02.00123415670Search in Google Scholar

[4] Drolle, E., Kučerka, N., Hoopes, M. I., Choi, Y., Katsaras, J., Karttunen, M., and Leonenko, Z. Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes. Biochimica et Biophysica Acta 2013;1828(9):2247-54.10.1016/j.bbamem.2013.05.01523714288Search in Google Scholar

[5] Fitter, J., Neutron scattering in biology: Techniques and applicationsSpringer-Verlag; 2006.(Gutberlet, T.; Katsaras, J.10.1007/3-540-29111-3Search in Google Scholar

[6] Greenspan, Lewis. Humidity Fixed Points of Binary Saturated Aqueous Solutions. JOURNAL OF RESEARCH of the National Bureau of Standards - A.Phys ics and Chemistry 1977;81A(1):89-96.10.6028/jres.081A.011Search in Google Scholar

[7] Harroun, Thad A., Kučerka, Norbert, Nieh, Mu Ping, and Katsaras, John. Neutron and X-Ray Scattering for Biophysics and Biotechnology: Examples of Self-Assembled Lipid Systems. Soft Matter 2009;5(14):2694-703.10.1039/b819799gSearch in Google Scholar

[8] Ingolfsson, H. I., Melo, M. N., van Eerden, F. J., Arnarez, C., Lopez, C. A., Wassenaar, T. A., Periole, X., de Vries, A. H., Tieleman, D. P., and Marrink, S. J. Lipid Organization of the Plasma Membrane. J.Am.Chem.Soc. 15-10-2014;136(41):14554-9.10.1021/ja507832e25229711Search in Google Scholar

[9] Katsaras, J. Adsorbed to a Rigid Substrate, Dimyristoylphosphatidylcholine Multibilayers Attain Full Hydration in All Mesophases. Biophys.J. 1998;75(5):2157-62. Search in Google Scholar

[10] Kučerka, N., Heberle, F. A., Pan, J., and Katsaras, J. Structural Significance of Lipid Diversity As Studied by Small Angle Neutron and X-Ray Scattering. Membranes (Basel) 2015a;5(3):454-72.10.3390/membranes5030454458429026402708Search in Google Scholar

[11] Kučerka, N., Katsaras, J., and Nagle, J. F. Comparing Membrane Simulations to Scattering Experiments: Introducing the SIMtoEXP Software. Journal of Membrane Biology 2010;235(1):43-50.10.1007/s00232-010-9254-5287633620407764Search in Google Scholar

[12] Kučerka, N., Nagle, J. F., Sachs, J. N., Feller, S. E., Pencer, J., Jackson, A., and Katsaras, J. Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data. Biophys.J. 2008a;95(5):2356-67.10.1529/biophysj.108.132662251704718502796Search in Google Scholar

[13] Kučerka, N., Nieh, M. P., Pencer, J., Sachs, J. N., and Katsaras, J. What Determines the Thickness of a Biological Membrane. Gen. Physiol Biophys. 2009;28(2):117-25.Search in Google Scholar

[14] Kučerka, N., Papp-Szabo, E., Nieh, M. P., Harroun, T. A., Schooling, S. R., Pencer, J., Nicholson, E. A., Beveridge, T. J., and Katsaras, J. Effect of Cations on the Structure of Bilayers Formed by Lipopolysaccharides Isolated From Pseudomonas Aeruginosa PAO1. J.Phys Chem.B 10-7-2008b;112(27):8057-62.10.1021/jp8027963Search in Google Scholar

[15] Kučerka, N., van Oosten, B., Pan, J., Heberle, F. A., Harroun, T. A., and Katsaras, J. Molecular Structures of Fluid Phosphatidylethanolamine Bilayers Obtained From Simulationto- Experiment Comparisons and Experimental Scattering Density Profiles. The Journal of Physical Chemistry B 5-2- 2015b;119(5):1947-56.10.1021/jp511159qSearch in Google Scholar

[16] Kučerka, N., Dushanov, E., Kholmurodov, K. T., Katsaras, J., and Uhrikova, D. Calcium and Zinc Differentially Affect the Structure of Lipid Membranes. Langmuir 2017;33:3134-3141.10.1021/acs.langmuir.6b03228Search in Google Scholar

[17] Marquardt, D., Kučerka, N., Wassall, S. R., Harroun, T. A., and Katsaras, J. Cholesterol’s Location in Lipid Bilayers. Chem.Phys Lipids 2016;199:17-25.10.1016/j.chemphyslip.2016.04.001Search in Google Scholar

[18] Marquardt, D., Williams, J. A., Kučerka, N., Atkinson, J., Wassall, S. R., Katsaras, J., and Harroun, T. A. Tocopherol Activity Correlates With Its Location in a Membrane: a New Perspective on the Antioxidant Vitamin E. J.Am.Chem.Soc. 22-5-2013;135(20):7523-33.10.1021/ja312665rSearch in Google Scholar

[19] Marquardt, Drew; Harroun, Thad A. Locations of Small Biomolecules in Model Membranes. Liposomes, Lipid Bilayers and Model Membranes.CRC Press; 19-2-2014. pp.199-216.10.1201/b16617-15Search in Google Scholar

[20] Mihailescu, M., Vaswani, R. G., Jardon-Valadez, E., Castro-Roman, F., Freites, J. A., Worcester, D. L., Chamberlin, A. R., Tobias, D. J., and White, S. H. Acyl-Chain Methyl Distributions of Liquid-Ordered and -Disordered Membranes. Biophys.J. 16-3-2011;100(6):1455-62.10.1016/j.bpj.2011.01.035Search in Google Scholar

[21] Nagle, J. F., Akabori, K., Treece, B. W., and Tristram-Nagle, S. Determination of Mosaicity in Oriented Stacks of Lipid Bilayers. Soft Matter 14-2-2016;12(6):1884-91.10.1039/C5SM02336JSearch in Google Scholar

[22] Nagle, J. F. and Tristram-Nagle, S. Structure of Lipid Bilayers. Biochimica et Biophysica Acta 10-11-2000;1469(3):159-95.10.1016/S0304-4157(00)00016-2Search in Google Scholar

[23] Pabst, G., Hodzic, A., Strancar, J., Danner, S., Rappolt, M., and Laggner, P. Rigidification of Neutral Lipid Bilayers in the Presence of Salts. Biophys.J. 15-10-2007a;93(8):2688-96.10.1529/biophysj.107.112615198972417586572Search in Google Scholar

[24] Pabst, G., Hodzic, A., Strancar, J., Danner, S., Rappolt, M., and Laggner, P. Rigidification of Neutral Lipid Bilayers in the Presence of Salts. Biophys.J. 15-10-2007b;93(8):2688-96.10.1529/biophysj.107.112615Search in Google Scholar

[25] Pabst, G., Kučerka, N., Nieh, M. P., Rheinstadter, M. C., and Katsaras, J. Applications of Neutron and X-Ray Scattering to the Study of Biologically Relevant Model Membranes. Chem.Phys Lipids 2010;163(6):460-79.10.1016/j.chemphyslip.2010.03.010Search in Google Scholar

[26] Pan, J., Heberle, F. A., Tristram-Nagle, S., Szymanski, M., Koepfinger, M., Katsaras, John, and Kučerka, N. Molecular Structures of Fluid Phase Phosphatidylglycerol Bilayers As Determined by Small Angle Neutron and X-Ray Scattering. Biochimica et Biophysica Acta 2012;1818(9):2135-48.10.1016/j.bbamem.2012.05.007Search in Google Scholar

[27] Pan, J., Tristram-Nagle, S., and Nagle, J. F. Alamethicin Aggregation in Lipid Membranes. Journal of Membrane Biology 2009;231(1):11-27.10.1007/s00232-009-9199-8Search in Google Scholar

[28] Petrache, H. I., Feller, S. E., and Nagle, J. F. Determination of Component Volumes of Lipid Bilayers From Simulations. Biophys.J. 1997;72(5):2237-42.Search in Google Scholar

[29] Petrache, H. I., Tristram-Nagle, S., Harries, D., Kučerka, N., Nagle, J. F., and Parsegian, V. A. Swelling of Phospholipids by Monovalent Salt. J.Lipid Res. 2006;47(2):302-9.10.1194/jlr.M500401-JLR200Search in Google Scholar

[30] Poger, D., Caron, B., and Mark, A. E. Validating Lipid Force Fields Against Experimental Data: Progress, Challenges and Perspectives. Biochimica et Biophysica Acta 2016;1858(7 Pt B):1556-65.10.1016/j.bbamem.2016.01.029Search in Google Scholar

[31] Tristram-Nagle, S., Chan, R., Kooijman, E., Uppamoochikkal, P., Qiang, W., Weliky, D. P., and Nagle, J. F. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics. J.Mol.Biol. 10-9-2010;402(1):139-53.10.1016/j.jmb.2010.07.026Search in Google Scholar

[32] Uhrikova, D., Kučerka, N., Lengyel, A., Pullmannova, P., Teixeira, J., Murugova, T., Funari, S. S., and Balgavy, P. Lipid Bilayer - NA Interaction Mediated by Divalent Metal Cations: SANS and SAXD Study. Journal of Physics: Conference Series 2012;351(1):012011.Search in Google Scholar

[33] Uhrikova, D., Kučerka, N., Teixeira, J., Gordeliy, V., and Balgavy, P. Structural Changes in Dipalmitoylphosphatidylcholine Bilayer Promoted by Ca2+ Ions: a Small-Angle Neutron Scattering Study. Chem.Phys Lipids 2008;155(2):80-9.Search in Google Scholar

[34] Valley, C. C., Perlmutter, J. D., Braun, A. R., and Sachs, J. N. NaCl Interactions With Phosphatidylcholine Bilayers Do Not Alter Membrane Structure but Induce Long-Range Ordering of Ions and Water. Journal of Membrane Biology 2011;244(1):35-42.10.1007/s00232-011-9395-1Search in Google Scholar

[35] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J. GROMACS: Fast, Flexible, and Free. J.Comput.Chem. 2005;26(16):1701-18.Search in Google Scholar

[36] Worcester, D. L. and Franks, N. P. Structural Analysis of Hydrated Egg Lecithin and Cholesterol Bilayers. II. Neutrol Diffraction. J.Mol.Biol. 25-1-1976;100(3):359-78.10.1016/S0022-2836(76)80068-XSearch in Google Scholar

[37] Yamada, L., Seto, Hideki, Takeda, Takayoshi, Nagao, Michihiro, Kawabata, Youhei, and Inoue, Katsuaki. SAXS, SANS and NSE Studies on “Unbound State” in DPPC/Water/CaCl2 System. Journal of the Physical Society of Japan 15-10- 2005;74(10):2853-9.10.1143/JPSJ.74.2853Search in Google Scholar

eISSN:
2453-6725
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Pharmacy, other